Job_SignsPads/STM32/Code/STM32F405/nnom_src/layers/nnom_dense.c

208 lines
6.5 KiB
C
Raw Permalink Normal View History

2025-04-22 02:29:37 +00:00
/*
* Copyright (c) 2018-2020
* Jianjia Ma
* majianjia@live.com
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2019-07-23 Jianjia Ma The first version
*/
#include <stdint.h>
#include <string.h>
#include <stdbool.h>
#include "nnom.h"
#include "nnom_local.h"
#include "nnom_layers.h"
#include "layers/nnom_dense.h"
#ifdef NNOM_USING_CMSIS_NN
#include "arm_math.h"
#include "arm_nnfunctions.h"
#endif
nnom_layer_t *dense_s(const nnom_dense_config_t *config)
{
nnom_dense_layer_t *layer;
nnom_buf_t *comp;
nnom_layer_io_t *in, *out;
// apply a block memory for all the sub handles.
size_t mem_size = sizeof(nnom_dense_layer_t) + sizeof(nnom_layer_io_t) * 2 + sizeof(nnom_buf_t);
layer = nnom_mem(mem_size);
if (layer == NULL)
return NULL;
// distribut the memory to sub handles.
in = (void *)((uint8_t*)layer + sizeof(nnom_dense_layer_t));
out = (void *)((uint8_t*)in + sizeof(nnom_layer_io_t));
comp = (void *)((uint8_t*)out + sizeof(nnom_layer_io_t));
// set type in layer parent
layer->super.type = NNOM_DENSE;
// set buf state
in->type = NNOM_TENSOR_BUF_TEMP;
out->type = NNOM_TENSOR_BUF_TEMP;
comp->type = NNOM_TENSOR_BUF_TEMP;
// put in & out on the layer.
layer->super.in = io_init(layer, in);
layer->super.out = io_init(layer, out);
layer->super.comp = comp;
// set run and outshape methods
layer->super.run = dense_run;
layer->super.build = dense_build;
layer->super.free = dense_free;
// set parameters
layer->output_unit = tensor_get_num_channel(config->weight);
layer->bias = config->bias;
layer->weight = config->weight;
// set shifts
layer->output_rshift = (nnom_qformat_param_t *)config->output_shift;
layer->bias_lshift = (nnom_qformat_param_t *)config->bias_shift;
// set config
layer->super.config = (void*) config;
return (nnom_layer_t *)layer;
}
nnom_layer_t *Dense(size_t output_unit, const nnom_weight_t *w, const nnom_bias_t *b)
{
nnom_dense_layer_t *layer;
nnom_buf_t *comp;
nnom_layer_io_t *in, *out;
// apply a block memory for all the sub handles.
size_t mem_size = sizeof(nnom_dense_layer_t) + sizeof(nnom_layer_io_t) * 2 + sizeof(nnom_buf_t);
layer = nnom_mem(mem_size);
if (layer == NULL)
return NULL;
// distribut the memory to sub handles.
in = (void *)((uint8_t*)layer + sizeof(nnom_dense_layer_t));
out = (void *)((uint8_t*)in + sizeof(nnom_layer_io_t));
comp = (void *)((uint8_t*)out + sizeof(nnom_layer_io_t));
// set type in layer parent
layer->super.type = NNOM_DENSE;
// set buf state
in->type = NNOM_TENSOR_BUF_TEMP;
out->type = NNOM_TENSOR_BUF_TEMP;
comp->type = NNOM_TENSOR_BUF_TEMP;
// put in & out on the layer.
layer->super.in = io_init(layer, in);
layer->super.out = io_init(layer, out);
layer->super.comp = comp;
// set run and outshape methods
layer->super.run = dense_run;
layer->super.build = dense_build;
// set parameters
layer->output_unit = output_unit; // this is no longer needed. the information is contained in the weight tensor.
layer->weight = new_tensor(NNOM_QTYPE_PER_TENSOR, 2, output_unit);
layer->bias = new_tensor(NNOM_QTYPE_PER_TENSOR, 1, output_unit);
// configure weight tensor manually to support new tensor-based backends.
// needs to be very careful
{
// config weight
nnom_shape_data_t dim[2] = {0, output_unit}; // the first dim doesnt matter here. will be file in later.
*(layer->weight->q_offset) = 0; // we have no support of offset here
*(layer->weight->q_dec) = 0; // this is not even correct
layer->weight->p_data = (void*)w->p_value;
layer->weight->bitwidth = 8;
layer->weight->qtype = NNOM_QTYPE_PER_TENSOR;
nnom_memcpy(layer->weight->dim, dim, layer->weight->num_dim * sizeof(nnom_shape_data_t));
// config bias
dim[0] = output_unit;
*(layer->bias->q_offset) = 0; // we have no support of offset here
*(layer->bias->q_dec) = 0; // this is not even correct
layer->bias->p_data = (void*)b->p_value;
layer->bias->bitwidth = 8;
layer->weight->qtype = NNOM_QTYPE_PER_TENSOR;
nnom_memcpy(layer->bias->dim, dim, layer->bias->num_dim * sizeof(nnom_shape_data_t));
}
// set output shifts
layer->output_rshift = (nnom_qformat_param_t *)&w->shift;
layer->bias_lshift = (nnom_qformat_param_t *)&b->shift;
return (nnom_layer_t *)layer;
}
nnom_status_t dense_build(nnom_layer_t *layer)
{
nnom_dense_layer_t *cl = (nnom_dense_layer_t *)layer;
// get the tensor from last layer's output
layer->in->tensor = layer->in->hook.io->tensor;
// create new tensor for output
layer->out->tensor = new_tensor(NNOM_QTYPE_PER_TENSOR, 1, tensor_get_num_channel(layer->in->tensor));
// setup new tensor
nnom_shape_data_t dim[1] = {cl->output_unit};
tensor_set_attr(layer->out->tensor, cl->weight->q_dec, cl->weight->q_offset, dim, 1, 8); // test, this is not correct
// calculate the output tensor q format, only support per tensor quantise now
layer->out->tensor->q_dec[0] = layer->in->tensor->q_dec[0] + cl->weight->q_dec[0] - cl->output_rshift[0];
// see if the activation will change the q format
if(layer->actail)
layer->out->tensor->q_dec[0] = act_get_dec_bit(layer->actail->type, layer->out->tensor->q_dec[0]);
// vec_buffer size: dim_vec (*2, q7->q15) ? I am not sure this is right
layer->comp->size = tensor_size(layer->in->tensor)*2;
// computational cost: In * out
layer->stat.macc = tensor_size(layer->in->tensor) * tensor_size(layer->out->tensor);
return NN_SUCCESS;
}
nnom_status_t dense_free(nnom_layer_t *layer)
{
// free weight and bias tensor when we are not initialised from structured configuration.
if(!layer->config)
{
nnom_dense_layer_t* cl = (nnom_dense_layer_t*)layer;
delete_tensor(cl->weight);
delete_tensor(cl->bias);
}
return NN_SUCCESS;
}
nnom_status_t dense_run(nnom_layer_t *layer)
{
nnom_status_t result = NN_SUCCESS;
nnom_dense_layer_t *cl = (nnom_dense_layer_t *)(layer);
nnom_qformat_param_t bias_shift = cl->bias_lshift[0]; // this is not correct but a temporary fix solution for backward compatibility.
nnom_qformat_param_t output_shift = cl->output_rshift[0];
#if !(DENSE_WEIGHT_OPT)
#ifdef NNOM_USING_CMSIS_NN
result = (nnom_status_t)arm_fully_connected_q7(
#else
local_fully_connected_q7(
#endif
#else
#ifdef NNOM_USING_CMSIS_NN
result = (nnom_status_t)arm_fully_connected_q7_opt(
#else
local_fully_connected_q7_opt(
#endif
#endif
layer->in->tensor->p_data,
cl->weight->p_data,
tensor_size(layer->in->tensor), layer->out->tensor->dim[0],
bias_shift, output_shift,
cl->bias->p_data,
layer->out->tensor->p_data, (q15_t *)(layer->comp->mem->blk));
return result;
}