Job_SignsPads/STM32/Code/STM32F405/nnom_src/layers/nnom_input.c

146 lines
4.9 KiB
C
Raw Permalink Normal View History

2025-04-22 02:29:37 +00:00
/*
* Copyright (c) 2018-2020
* Jianjia Ma
* majianjia@live.com
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2019-07-23 Jianjia Ma The first version
*/
#include <stdint.h>
#include <string.h>
#include <stdbool.h>
#include "nnom.h"
#include "nnom_local.h"
#include "nnom_layers.h"
#include "layers/nnom_input.h"
nnom_layer_t *input_s(const nnom_io_config_t* config)
{
nnom_io_layer_t *layer;
nnom_layer_io_t *in, *out;
// apply a block memory for all the sub handles.
layer = nnom_mem(sizeof(nnom_io_layer_t) + sizeof(nnom_layer_io_t) * 2);
if (layer == NULL)
return NULL;
// distribut the memory to sub handles.
in = (void *)((uint8_t*)layer + sizeof(nnom_io_layer_t));
out = (void *)((uint8_t*)in + sizeof(nnom_layer_io_t));
// set type in layer parent
layer->super.type = NNOM_INPUT;
layer->super.run = input_run;
layer->super.build = input_build;
// set buf state
in->type = NNOM_TENSOR_BUF_TEMP;
out->type = NNOM_TENSOR_BUF_NULL;
// put in & out on the layer.
layer->super.in = io_init(layer, in);
layer->super.out = io_init(layer, out);
/*
// some other layers (Conv, pooling) are not supporting 12 d input, we still expand the 1,2 dimension to 3
// test -> native support 1,2,3 D input.
layer->super.in->tensor = new_tensor(NNOM_QTYPE_PER_TENSOR, config->tensor->num_dim, tensor_get_num_channel(config->tensor));
tensor_cpy_attr(layer->super.in->tensor, config->tensor);
layer->buf = config->tensor->p_data;
layer->dec_bit = config->tensor->q_dec[0];
*/
// set parameters
if(config->tensor->num_dim == 1) // test for 1d input, expend h = 1
layer->shape = shape(1, 1, config->tensor->dim[0]);
else if (config->tensor->num_dim == 2) // test for 1d input, expend h = 1
layer->shape = shape(1, config->tensor->dim[0], config->tensor->dim[1]);
else
layer->shape = shape(config->tensor->dim[0], config->tensor->dim[1], config->tensor->dim[2]);
layer->buf = config->tensor->p_data;
layer->dec_bit = config->tensor->q_dec[0];
// experimental: fixed input dim to 3
// input normally dont have a tensor, so we create one to store the initial data.
nnom_shape_data_t dim[3] = {layer->shape.h, layer->shape.w, layer->shape.c};
layer->super.in->tensor = new_tensor(NNOM_QTYPE_PER_TENSOR, 3, tensor_get_num_channel(config->tensor));
tensor_set_attr_v(layer->super.in->tensor, layer->dec_bit, 0, dim, sizeof(dim)/sizeof(nnom_shape_data_t), 8);
return (nnom_layer_t *)layer;
}
nnom_layer_t *Input(nnom_3d_shape_t input_shape, void *p_buf)
{
nnom_io_layer_t *layer;
nnom_layer_io_t *in, *out;
// apply a block memory for all the sub handles.
layer = nnom_mem(sizeof(nnom_io_layer_t) + sizeof(nnom_layer_io_t) * 2);
if (layer == NULL)
return NULL;
// distribut the memory to sub handles.
in = (void *)((uint8_t*)layer + sizeof(nnom_io_layer_t));
out = (void *)((uint8_t*)in + sizeof(nnom_layer_io_t));
// set type in layer parent
layer->super.type = NNOM_INPUT;
layer->super.run = input_run;
layer->super.build = input_build;
// set buf state
in->type = NNOM_TENSOR_BUF_TEMP;
out->type = NNOM_TENSOR_BUF_NULL;
// put in & out on the layer.
layer->super.in = io_init(layer, in);
layer->super.out = io_init(layer, out);
// set parameters
layer->shape = input_shape;
layer->buf = p_buf;
layer->dec_bit = 7;
// experimental: fixed input dim to 3
// input normally dont have a tensor, so we create one to store the initial data.
nnom_shape_data_t dim[3] = { input_shape.h, input_shape.w, input_shape.c };
layer->super.in->tensor = new_tensor(NNOM_QTYPE_PER_TENSOR, 3, input_shape.c);
tensor_set_attr_v(layer->super.in->tensor, layer->dec_bit, 0, dim, sizeof(dim)/sizeof(nnom_shape_data_t), 8);
return (nnom_layer_t *)layer;
}
nnom_status_t input_build(nnom_layer_t* layer)
{
// the input tensor of inputlayer has assigned previously
// output tensor
// 1. allocate a new tensor for output
// 2. set the same dim, qfmt to the new tensor.
layer->out->tensor = new_tensor(NNOM_QTYPE_PER_TENSOR, layer->in->tensor->num_dim, tensor_get_num_channel(layer->in->tensor));
tensor_cpy_attr(layer->out->tensor, layer->in->tensor);
// now this build has passed the input tensors (shapes, formats) to the new tensors.
return NN_SUCCESS;
}
nnom_status_t input_run(nnom_layer_t *layer)
{
nnom_io_layer_t *cl = (nnom_io_layer_t *)layer;
#ifdef NNOM_USING_CHW
if(layer->in->tensor->num_dim == 3)
{
nnom_3d_shape_t shape = {layer->in->tensor->dim[0], layer->in->tensor->dim[1], layer->in->tensor->dim[2]};
hwc2chw_q7(shape, cl->buf, layer->in->tensor->p_data);
}
else if (layer->in->tensor->num_dim == 2)
{
nnom_3d_shape_t shape = {1, layer->in->tensor->dim[0], layer->in->tensor->dim[1]};
hwc2chw_q7(shape, cl->buf, layer->in->tensor->p_data);
}
else
#endif
nnom_memcpy(layer->in->tensor->p_data, cl->buf, tensor_size(layer->in->tensor));
return NN_SUCCESS;
}