/* * Copyright (c) 2018-2020 * Jianjia Ma * majianjia@live.com * * SPDX-License-Identifier: Apache-2.0 * * Change Logs: * Date Author Notes * 2019-07-23 Jianjia Ma The first version */ #include #include #include #include "nnom.h" #include "nnom_local.h" #include "nnom_layers.h" #include "layers/nnom_sumpool.h" nnom_layer_t *sumpool_s(const nnom_pool_config_t * config) { nnom_sumpool_layer_t *cl; if(config->num_dim == 1) { cl = (nnom_sumpool_layer_t *)SumPool(kernel(1, config->kernel_size[0]), stride(1, config->stride_size[0]), config->padding_type); } else { cl = (nnom_sumpool_layer_t *)SumPool(kernel(config->kernel_size[0], config->kernel_size[1]), stride(config->stride_size[0], config->stride_size[1]), config->padding_type); } if(cl) { cl->super.config = (void*) config; cl->output_shift = config->output_shift; // no idea if we need it } return (nnom_layer_t *)cl; } nnom_layer_t *SumPool(nnom_3d_shape_t k, nnom_3d_shape_t s, nnom_padding_t pad_type) { nnom_layer_t *layer = MaxPool(k, s, pad_type); if (layer != NULL) { layer->type = NNOM_SUMPOOL; layer->run = sumpool_run; layer->build = sumpool_build; } return (nnom_layer_t *)layer; } nnom_status_t sumpool_build(nnom_layer_t *layer) { // avg pooling share the same output shape, stride, padding setting. maxpool_build(layer); // however, avg pooling require a computational buffer. layer->comp->size = 4 * tensor_size(layer->out->tensor); return NN_SUCCESS; } // sum pooling, dynamic change Q format, must be used in the last layer before softmax in current version nnom_status_t sumpool_run(nnom_layer_t *layer) { nnom_sumpool_layer_t *cl = (nnom_sumpool_layer_t *)(layer); uint16_t out_x, out_y; // if global pooling if(layer->out->tensor->num_dim == 1) { out_x = 1; out_y = 1; } else // normal pooling. { out_x = layer->out->tensor->dim[1]; //W out_y = layer->out->tensor->dim[0]; //h } #ifdef NNOM_USING_CHW local_sumpool_q7_CHW( #else local_sumpool_q7_HWC( #endif layer->in->tensor->p_data, layer->in->tensor->dim[1], layer->in->tensor->dim[0], layer->in->tensor->dim[2], cl->kernel.w, cl->kernel.h, cl->pad.w, cl->pad.h, cl->stride.w, cl->stride.h, out_x, out_y, layer->comp->mem->blk, layer->out->tensor->p_data); return NN_SUCCESS; }