#include "find_peaks.h" void compute_dynamic_threshold_optimized(const float *data, float *thresholds) { float buffer[WINDOW_SIZE]; // 循环缓冲区 int buf_idx = 0; // 缓冲区当前写入位置 float window_sum = 0.0f; // 第一阶段:初始化缓冲区 for (int i = 0; i < WINDOW_SIZE; i++) { float energy = data[i] * data[i]; buffer[buf_idx] = energy; window_sum += energy; buf_idx = (buf_idx + 1) % WINDOW_SIZE; } // 第二阶段:计算首个有效阈值 float first_threshold = DYNAMIC_THRESH_RATIO * sqrtf(window_sum / WINDOW_SIZE); // 填充前WINDOW_SIZE个阈值(与原算法行为一致) for (int i = 0; i < WINDOW_SIZE; i++) { thresholds[i] = first_threshold; } // 第三阶段:滑动窗口处理后续数据 for (int i = WINDOW_SIZE; i < DATA_LENGTH; i++) { float new_energy = data[i] * data[i]; float old_energy = buffer[buf_idx]; // 获取最早的能量值 window_sum += new_energy - old_energy; // 更新滑动总和 buffer[buf_idx] = new_energy; // 更新缓冲区 buf_idx = (buf_idx + 1) % WINDOW_SIZE; // 移动循环指针 // 计算动态阈值 thresholds[i] = DYNAMIC_THRESH_RATIO * sqrtf(window_sum / WINDOW_SIZE); } } // 滑动平均预处理 void moving_average(float *data) { float buffer[MOVING_AVG_WINDOW] = {0.0f}; float sum = 0.0f; // 初始化窗口 for (int i = 0; i < MOVING_AVG_WINDOW; i++) { buffer[i] = data[i]; sum += data[i]; } // 滑动处理 for (int i = MOVING_AVG_WINDOW; i < DATA_LENGTH; i++) { sum = sum - buffer[i % MOVING_AVG_WINDOW] + data[i]; buffer[i % MOVING_AVG_WINDOW] = data[i]; data[i - MOVING_AVG_WINDOW / 2] = sum / MOVING_AVG_WINDOW; } } PeakResult find_peaks(const float *input) { PeakResult result_struct = { .peaks = {0}, // 初始化peaks数组全为0 .thresholds = {0.0f}, // 初始化thresholds数组全为0.0f .count = 0}; // 初始化count为0 // memset(&result_struct,0,sizeof(result_struct)); float data[DATA_LENGTH] = {0.0f}; int i = 0, j = 0; // 拷贝并预处理数据 memcpy(data, input, sizeof(float) * DATA_LENGTH); moving_average(data); // 第一阶段:候选波峰检测 int candidates[MAX_CANDIDATES] = {0}; int candidate_count = 0; float prev_diff = 0.0f; for (i = 1; i < DATA_LENGTH; i++) { float diff = data[i] - data[i - 1]; if (prev_diff > 0 && diff < 0) { // 斜率由正转负 candidates[candidate_count++] = i - 1; } prev_diff = diff; } // 第二阶段:动态阈值计算 compute_dynamic_threshold_optimized(data, result_struct.thresholds); // 动态阈值 // 第三阶段:峰值筛选 int last_peak = -MIN_PEAK_DISTANCE; for (j = 0; j < candidate_count; j++) { const int idx = candidates[j]; if (data[idx] > result_struct.thresholds[idx] && (idx - last_peak) >= MIN_PEAK_DISTANCE) { result_struct.peaks[result_struct.count++] = idx; last_peak = idx; } if (result_struct.count >= sizeof(result_struct.peaks) / sizeof(int)) break; } return result_struct; } int calculate_heart_rate(const PeakResult *result) { const int sample_rate = SAMPLE_RATE; // 采样率50Hz float avg_interval = 0.0f; if (result->count < 2) { return -1; // 波峰不足无法计算心率 } // 计算相邻波峰的平均间隔(网页1和网页7的结合) int total_intervals = 0; for (int i = 1; i < result->count; i++) { int interval = result->peaks[i] - result->peaks[i - 1]; // 间隔的点数 if (interval >= 30 && interval <= 116) { total_intervals += interval; } else { return -1; } } // 计算平均间隔时间(秒) avg_interval = total_intervals / (float)(result->count - 1) / sample_rate; int hp_output = 0; hp_output = (int)round(60.0f / avg_interval); // 60秒 / 平均间隔秒数 return hp_output; } int time_domain_heart_rate(float *hp_data) { PeakResult time_result = find_peaks(hp_data); int hr = calculate_heart_rate(&time_result); if (hr < 30 || hr > 150) { // 生理范围验证 return -2; // 异常心率代码 } return hr; }