mirror of
https://gitee.com/moluo-tech/AT-Command
synced 2025-06-17 16:07:52 +00:00
270 lines
6.6 KiB
Markdown
270 lines
6.6 KiB
Markdown
# AT Command
|
||
|
||
[](https://gitee.com/moluo-tech/ril/blob/master/LICENSE)
|
||
|
||
## 介绍
|
||
一种AT命令通信解析模块,支持裸机(at_chat)和OS版本(at)。适用于modem、WIFI模块、蓝牙通信。
|
||
|
||
## 软件架构
|
||
|
||
- at_chat.c at_chat.h list.h
|
||
|
||
用于无OS版本,使用链式队列及异步回调方式处理AT命令收发,支持URC处理、自定义命令发送与解析作业。
|
||
- at.c at.h at_util.h comdef.h
|
||
|
||
用于OS版本, 使用前需要根据at_util.h规定的操作系统相关的接口进行移植,如提供信号量操作、任务延时等操作。
|
||
|
||
|
||
## 使用说明
|
||
|
||
### at_chat 模块(无OS)
|
||
|
||
|
||
#### 基本概念
|
||
|
||
at_chat 模块使用链式队列进行管理,包含2条链表,空闲链表和就绪链表。它们的每一个基本工作单元称为一个作业项,对于将要执行的命令都会放到就绪链表中,命令执行完成之后由空闲链表来进行回收,作业项的定义如下:
|
||
|
||
```c
|
||
|
||
/*AT作业项*/
|
||
typedef struct {
|
||
unsigned int state : 3;
|
||
unsigned int type : 3; /* 作业类型*/
|
||
unsigned int abort : 1;
|
||
void *param; /* 通用参数*/
|
||
void *info; /* 通用信息指针*/
|
||
struct list_head node; /* 链表结点*/
|
||
}at_item_t;
|
||
|
||
```
|
||
|
||
作业是AT控制器定义时固定分配的,没有使用动态内存,默认支持10个作业项,即同时可以允许10个AT命令排队等待处理。
|
||
|
||
/*...未完,待续*/
|
||
|
||
#### 基本接口与描述
|
||
- at_send_singlline, 发送单行命令,默认等待OK响应,超时3S
|
||
- at_send_multiline, 多行命令,默认等待OK响应,超时3S
|
||
- at_do_cmd,支持自定义发送格式与接收匹配串
|
||
- at_do_work,支持自定义发送与接收解析
|
||
|
||
#### 效果演示
|
||
|
||
详细使用可以参考Demo程序wifi_task.c模块
|
||
|
||

|
||
|
||
#### 使用步骤
|
||
|
||
1.定义AT控制器及通信适配器接口
|
||
```c
|
||
/*
|
||
* @brief 定义AT控制器
|
||
*/
|
||
static at_obj_t at;
|
||
|
||
const at_adapter_t adap = { //AT适配器接口
|
||
//适配GPRS模块的串口读写接口
|
||
.write = uart_write,
|
||
.read = uart_read
|
||
...
|
||
};
|
||
|
||
```
|
||
|
||
2. 初始化AT控制器并放入任务中轮询(考虑到处理实时性,建议20ms以下)
|
||
|
||
```c
|
||
/*
|
||
* @brief wifi初始化
|
||
*/
|
||
void wifi_init(void)
|
||
{
|
||
at_obj_init(&at, &adap);
|
||
/*...*/
|
||
}driver_init("wifi", wifi_init);
|
||
|
||
/*
|
||
* @brief wifi任务(10ms 轮询1次)
|
||
*/
|
||
void wifi_task(void)
|
||
{
|
||
at_poll_task(&at);
|
||
}task_register("wifi", wifi_task, 10);
|
||
|
||
```
|
||
|
||
|
||
#### 例子演示
|
||
|
||
```C
|
||
//WIFI IO配置命令
|
||
=> AT+GPIO_TEST_EN=1\r\n
|
||
|
||
<= OK\r\n
|
||
```
|
||
```c
|
||
|
||
/**
|
||
* @brief AT执行回调处理程序
|
||
*/
|
||
static void test_gpio_callback(at_response_t *r)
|
||
{
|
||
if (r->ret == AT_RET_OK ) {
|
||
printf("Execute successfully\r\n");
|
||
} else {
|
||
printf("Execute failure\r\n");
|
||
}
|
||
}
|
||
at_send_singlline(&at, test_gpio_callback, "AT+GPIO_TEST_EN=1");
|
||
```
|
||
|
||
|
||
### at 模块(OS版本)
|
||
|
||
由于AT命令通信是一个比较复杂的过程,对于没有OS的环境下处理难度比较大,也很绕,对于不允许阻塞程序,除了使用状态与+回调没有其它更好的办法,所以推荐使用这个模块
|
||
|
||
#### 基本接口与描述
|
||
|
||
- at_do_cmd,执行AT命令,可以通过这个接口进一步封装出一常用的单行命令、多行命令。
|
||
- at_split_respond_lines,命令响应分割器。
|
||
- at_do_work,适用于发送组合命令,如GPRS模组发送短信或者发送socket数据需要等待"<"或者"CONNECT"提示符,可以通过这个接口自定义收发。
|
||
|
||
#### 案例演示
|
||
|
||
参考我的另外一个项目[RIL(Radio Interface Layer)](https://gitee.com/moluo-tech/ril)
|
||
|
||
#### 使用步骤
|
||
|
||
1.定义AT控制器、通信适配器接口(包含URC回调函数表,接口缓冲区URC)
|
||
```c
|
||
|
||
static at_obj_t at; //定义AT控制器对象
|
||
|
||
static char urc_buf[128]; //URC主动上报缓冲区
|
||
|
||
utc_item_t utc_tbl[] = { //定义URC表
|
||
"+CSQ: ", csq_updated_handler
|
||
}
|
||
|
||
const at_adapter_t adap = { //AT适配器接口
|
||
.urc_buf = urc_buf,
|
||
.urc_bufsize = sizeof(urc_buf),
|
||
.utc_tbl = utc_tbl,
|
||
.urc_tbl_count = sizeof(utc_tbl) / sizeof(utc_item_t),
|
||
//debug调试接口
|
||
.debug = at_debug,
|
||
//适配GPRS模块的串口读写接口
|
||
.write = uart_write,
|
||
.read = uart_read
|
||
};
|
||
|
||
```
|
||
|
||
2.创建AT控制器并创建轮询处理线程
|
||
|
||
```c
|
||
|
||
void at_thread(void)
|
||
{
|
||
at_obj_create(&at, &adap);
|
||
while (1) {
|
||
at_process(&at);
|
||
}
|
||
}
|
||
|
||
```
|
||
#### 例子演示
|
||
|
||
##### 例子1(查询无线模组信号质量)
|
||
```c
|
||
/** at_do_cmd 接口使用演示
|
||
查询GPRS模组信号质量命令
|
||
=> AT+CSQ
|
||
|
||
<= +CSQ: 24, 0
|
||
<= OK
|
||
*/
|
||
|
||
/*
|
||
* @brief 获取csq值
|
||
*/
|
||
bool read_csq_value(at_obj_t *at, int *rssi, int *error_rate)
|
||
{
|
||
//接收缓冲区
|
||
unsigned char recvbuf[32];
|
||
//AT应答
|
||
at_respond_t r = {"OK", recvbuf, sizeof(recvbuf), 3000};
|
||
//
|
||
if (at_do_cmd(at, &r, "AT+CSQ") != AT_RET_OK)
|
||
return false;
|
||
//提取出响应数据
|
||
return (sscanf(recv, "%*[^+]+CSQ: %d,%d", rssi, error_rate) == 2);
|
||
|
||
}
|
||
|
||
```
|
||
|
||
##### 例子2(发送TCP数据)
|
||
```C
|
||
|
||
/** at_do_work 接口使用演示
|
||
参考自hl8518模组Socket 数据发送命令
|
||
=> AT+KTCPSND=<session_id>,<ndata>
|
||
|
||
<= CONNECT
|
||
|
||
=> <data>
|
||
|
||
<= OK
|
||
*/
|
||
|
||
/*
|
||
* @brief 数据发送处理
|
||
* @retval none
|
||
*/
|
||
static bool socket_send_handler(at_work_ctx_t *e)
|
||
{
|
||
struct socket_info *i = (struct socket_info *)e->params;
|
||
struct ril_sock *s = i->s;
|
||
|
||
if (s->type == SOCK_TYPE_TCP)
|
||
e->printf(e, "AT+KTCPSND=%d,%d", s->session, i->bufsize);
|
||
else
|
||
e->printf(e, "AT+KUDPSND=%d,%s,%d,%d",s->session, s->host,
|
||
s->port, i->bufsize);
|
||
|
||
if (e->wait_resp(e, "CONNECT", 5000) != AT_RET_OK) { //等待提示符
|
||
goto Error;
|
||
}
|
||
e->write(i->buf, i->bufsize); //发送数据
|
||
|
||
e->write("--EOF--Pattern--", strlen("--EOF--Pattern--")); //发送结束符
|
||
|
||
if (e->wait_resp(e, "OK", 5000) == AT_RET_OK)
|
||
return true;
|
||
else {
|
||
Error:
|
||
e->write("--EOF--Pattern--", strlen("--EOF--Pattern--"));
|
||
return false;
|
||
}
|
||
}
|
||
|
||
/**
|
||
* @brief socket 数据发送
|
||
* @param[in] s - socket
|
||
* @param[in] buf - 数据缓冲区
|
||
* @param[in] len - 缓冲区长度
|
||
*/
|
||
static bool hl8518_sock_send(ril_obj_t *r, struct ril_sock *s, const void *buf,
|
||
unsigned int len)
|
||
{
|
||
struct socket_info info = {s, (unsigned char *)buf, len, 0};
|
||
if (len == 0)
|
||
return false;
|
||
return at_do_work(&r->at, (at_work)socket_send_handler, &info);
|
||
}
|
||
|
||
|
||
```
|