Job_SignsPads/STM32/Code/STM32F405/Application/find_peaks.c

160 lines
4.5 KiB
C
Raw Normal View History

2025-04-22 02:29:37 +00:00
#include "find_peaks.h"
void compute_dynamic_threshold_optimized(const float *data, float *thresholds)
{
float buffer[WINDOW_SIZE]; // 循环缓冲区
int buf_idx = 0; // 缓冲区当前写入位置
float window_sum = 0.0f;
// 第一阶段:初始化缓冲区
for (int i = 0; i < WINDOW_SIZE; i++)
{
float energy = data[i] * data[i];
buffer[buf_idx] = energy;
window_sum += energy;
buf_idx = (buf_idx + 1) % WINDOW_SIZE;
}
// 第二阶段:计算首个有效阈值
float first_threshold = DYNAMIC_THRESH_RATIO * sqrtf(window_sum / WINDOW_SIZE);
// 填充前WINDOW_SIZE个阈值与原算法行为一致
for (int i = 0; i < WINDOW_SIZE; i++)
{
thresholds[i] = first_threshold;
}
// 第三阶段:滑动窗口处理后续数据
for (int i = WINDOW_SIZE; i < DATA_LENGTH; i++)
{
float new_energy = data[i] * data[i];
float old_energy = buffer[buf_idx]; // 获取最早的能量值
window_sum += new_energy - old_energy; // 更新滑动总和
buffer[buf_idx] = new_energy; // 更新缓冲区
buf_idx = (buf_idx + 1) % WINDOW_SIZE; // 移动循环指针
// 计算动态阈值
thresholds[i] = DYNAMIC_THRESH_RATIO * sqrtf(window_sum / WINDOW_SIZE);
}
}
// 滑动平均预处理
void moving_average(float *data)
{
float buffer[MOVING_AVG_WINDOW] = {0.0f};
float sum = 0.0f;
// 初始化窗口
for (int i = 0; i < MOVING_AVG_WINDOW; i++)
{
buffer[i] = data[i];
sum += data[i];
}
// 滑动处理
for (int i = MOVING_AVG_WINDOW; i < DATA_LENGTH; i++)
{
sum = sum - buffer[i % MOVING_AVG_WINDOW] + data[i];
buffer[i % MOVING_AVG_WINDOW] = data[i];
data[i - MOVING_AVG_WINDOW / 2] = sum / MOVING_AVG_WINDOW;
}
}
PeakResult find_peaks(const float *input)
{
PeakResult result_struct = {
.peaks = {0}, // 初始化peaks数组全为0
.thresholds = {0.0f}, // 初始化thresholds数组全为0.0f
.count = 0}; // 初始化count为0
// memset(&result_struct,0,sizeof(result_struct));
float data[DATA_LENGTH] = {0.0f};
int i = 0, j = 0;
// 拷贝并预处理数据
memcpy(data, input, sizeof(float) * DATA_LENGTH);
moving_average(data);
// 第一阶段:候选波峰检测
int candidates[MAX_CANDIDATES] = {0};
int candidate_count = 0;
float prev_diff = 0.0f;
for (i = 1; i < DATA_LENGTH; i++)
{
float diff = data[i] - data[i - 1];
if (prev_diff > 0 && diff < 0)
{ // 斜率由正转负
candidates[candidate_count++] = i - 1;
}
prev_diff = diff;
}
// 第二阶段:动态阈值计算
compute_dynamic_threshold_optimized(data, result_struct.thresholds); // 动态阈值
// 第三阶段:峰值筛选
int last_peak = -MIN_PEAK_DISTANCE;
for (j = 0; j < candidate_count; j++)
{
const int idx = candidates[j];
if (data[idx] > result_struct.thresholds[idx] &&
(idx - last_peak) >= MIN_PEAK_DISTANCE)
{
result_struct.peaks[result_struct.count++] = idx;
last_peak = idx;
}
if (result_struct.count >= sizeof(result_struct.peaks) / sizeof(int))
break;
}
return result_struct;
}
int calculate_heart_rate(const PeakResult *result)
{
const int sample_rate = SAMPLE_RATE; // 采样率50Hz
float avg_interval = 0.0f;
if (result->count < 2)
{
return -1; // 波峰不足无法计算心率
}
// 计算相邻波峰的平均间隔网页1和网页7的结合
int total_intervals = 0;
for (int i = 1; i < result->count; i++)
{
int interval = result->peaks[i] - result->peaks[i - 1]; // 间隔的点数
if (interval >= 30 && interval <= 116)
{
total_intervals += interval;
}
else
{
return -1;
}
}
// 计算平均间隔时间(秒)
avg_interval = total_intervals / (float)(result->count - 1) / sample_rate;
int hp_output = 0;
hp_output = (int)round(60.0f / avg_interval); // 60秒 / 平均间隔秒数
return hp_output;
}
int time_domain_heart_rate(float *hp_data)
{
PeakResult time_result = find_peaks(hp_data);
int hr = calculate_heart_rate(&time_result);
if (hr < 30 || hr > 150)
{ // 生理范围验证
return -2; // 异常心率代码
}
return hr;
}