[Upload Code]:add CAN_260 Version Code

This commit is contained in:
Brin 2025-05-26 12:59:20 +08:00
parent 52bfbe77e8
commit 326211d18a
29 changed files with 17709 additions and 5820 deletions

View File

@ -247,7 +247,7 @@
}
},
"activations_alignment": 4,
"arguments": "generate --target stm32f4 --name model -m D:/Job_Work/Code/Z_Python/myEnv/model.tflite --compression high --verbosity 1 -O ram --workspace C:/Users/admin/AppData/Local/Temp/mxAI_workspace24283202520290017248046793415177393 --output C:/Users/admin/.stm32cubemx/model_output",
"arguments": "analyze --target stm32f4 --name model -m D:/Job_Work/Code/Z_Python/myEnv/model.tflite --compression high --verbosity 1 -O ram --workspace C:/Users/admin/AppData/Local/Temp/mxAI_workspace77235330886140027537035278134169 --output C:/Users/admin/.stm32cubemx/model_output",
"c_activations_count": 1,
"c_arrays": [
{
@ -3533,7 +3533,7 @@
]
},
"data_alignment": 4,
"date_time": "2025-05-19T13:07:49+0800",
"date_time": "2025-05-25T16:12:50+0800",
"inputs": [
"serving_default_input0_output"
],

View File

@ -2492,44 +2492,44 @@
],
"environment": {
"generated_model": {
"generated_time": "2025-05-19T13:07:49+0800",
"generated_time": "2025-05-25T16:12:50+0800",
"model_files": [
{
"name": "model_data_params.h",
"signature": "0x46a81d5aac2acd86799ab0e3954a3f24"
"signature": "0xd8712a3febe7626681a994b663f4ba75"
},
{
"name": "model_data_params.c",
"signature": "0xa2c16c3d6188c3091787fe3d5af3c891"
"signature": "0x3b5c3f10f8757d6b9afe5325fe4a09ec"
},
{
"name": "model_data.h",
"signature": "0xfc40c7a20bec23192120426358579a8a"
"signature": "0xa21bd47f4807f9a3122fffbbcddc71fc"
},
{
"name": "model_data.c",
"signature": "0x00caa92daee05ae7a4b5e92a9887b596"
"signature": "0x05e2871c6cebe5d31dc03f093df4a4e6"
},
{
"name": "model_config.h",
"signature": "0xabbb8224cc676646254e214e596b7d8b"
"signature": "0xc85feee66fc22a2c7e1f13137be3cee4"
},
{
"name": "model.h",
"signature": "0x2f65c4a483d271fba22f560544e85c0c"
"signature": "0xd52f76bd0839a5ca2ddc671a864f7db5"
},
{
"name": "model.c",
"signature": "0x9682615e7a46b43e51e259197fcaa8db"
"signature": "0x6bdab8c3d6dcd5aa1691f4cdcf4036fa"
}
],
"name": "model"
},
"network_signature": "0x1e9c03d7869f1878",
"network_signature": "0x9124aa39a5a39db4",
"test_name": "",
"tools": [
{
"arguments": "generate --target stm32f4 --name model -m D:/Job_Work/Code/Z_Python/myEnv/model.tflite --compression high --verbosity 1 -O ram --workspace C:/Users/admin/AppData/Local/Temp/mxAI_workspace24283202520290017248046793415177393 --output C:/Users/admin/.stm32cubemx/model_output",
"arguments": "analyze --target stm32f4 --name model -m D:/Job_Work/Code/Z_Python/myEnv/model.tflite --compression high --verbosity 1 -O ram --workspace C:/Users/admin/AppData/Local/Temp/mxAI_workspace77235330886140027537035278134169 --output C:/Users/admin/.stm32cubemx/model_output",
"environment": [
"STATS_TYPE=X-CUBE-AI"
],

View File

@ -1,7 +1,7 @@
{
"_allocate_inputs": 4,
"_allocate_outputs": 4,
"cli_parameters": "generate --target stm32f4 --name model -m D:/Job_Work/Code/Z_Python/myEnv/model.tflite --compression high --verbosity 1 -O ram --workspace C:/Users/admin/AppData/Local/Temp/mxAI_workspace24283202520290017248046793415177393 --output C:/Users/admin/.stm32cubemx/model_output",
"cli_parameters": "analyze --target stm32f4 --name model -m D:/Job_Work/Code/Z_Python/myEnv/model.tflite --compression high --verbosity 1 -O ram --workspace C:/Users/admin/AppData/Local/Temp/mxAI_workspace77235330886140027537035278134169 --output C:/Users/admin/.stm32cubemx/model_output",
"cli_version": {
"extra": "20049",
"major": 2,
@ -11,10 +11,10 @@
"cli_version_str": "2.0.0-20049",
"code_size": 0,
"compression": [],
"date_time": "2025-05-19T13:07:49+0800",
"date_time": "2025-05-25T16:12:50+0800",
"error": 0,
"error_str": [],
"exec_cmd": "generate",
"exec_cmd": "analyze",
"exec_duration": 0.0,
"hash": "0x391deb77460dcfce8d55e2fc3b80314e",
"inputs": [

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,811 @@
{
"_allocate_inputs": 4,
"_allocate_outputs": 4,
"cli_parameters": "generate --target stm32f4 --name model -m D:/Job_Work/Code/Z_Python/myEnv/model2.tflite --compression high --verbosity 1 -O ram --workspace C:/Users/admin/AppData/Local/Temp/mxAI_workspace84040893089870013881319616322495011 --output C:/Users/admin/.stm32cubemx/model_output",
"cli_version": {
"extra": "20049",
"major": 2,
"micro": 0,
"minor": 0
},
"cli_version_str": "2.0.0-20049",
"code_size": 0,
"compression": [],
"date_time": "2025-05-26T11:06:58+0800",
"error": 0,
"error_str": [],
"exec_cmd": "generate",
"exec_duration": 0.0,
"hash": "0x02dd23f831c7bbf9c5b10eba7342e3d2",
"inputs": [
"serving_default_input0"
],
"layers": [
{
"c_id": [],
"extras": {
"n_macc": 0,
"n_params": 0,
"psize": 0,
"rom_output": {
"c_size": 1040,
"fmt": {
"format": "float"
},
"shape": [
260
]
},
"rom_size": 0
},
"id": 0,
"inputs": [],
"name": "serving_default_input0",
"original": "",
"type": "Input"
},
{
"c_id": [],
"extras": {
"n_macc": 0,
"n_params": 0,
"psize": 0,
"rom_size": 0
},
"id": 3,
"inputs": [
"serving_default_input0"
],
"name": "reshape_3",
"original": "RESHAPE",
"type": "Reshape"
},
{
"c_id": [],
"extras": {
"n_macc": 37456,
"n_params": 160,
"psize": 640,
"rom_output": {
"c_size": 4160,
"fmt": {
"format": "float"
},
"shape": [
13,
16,
5
]
},
"rom_size": 0
},
"id": 4,
"inputs": [
"reshape_3"
],
"name": "conv2d_4",
"original": "CONV_2D",
"type": "Conv2D"
},
{
"c_id": [],
"extras": {
"n_macc": 4160,
"n_params": 0,
"psize": 0,
"rom_size": 0
},
"id": 4,
"inputs": [
"conv2d_4"
],
"name": "nl_4_nl",
"original": "CONV_2D",
"type": "Nonlinearity"
},
{
"c_id": [
0
],
"extras": {
"n_macc": 4160,
"n_params": 0,
"psize": 0,
"rom_size": 640
},
"id": 5,
"inputs": [
"nl_4_nl"
],
"name": "pool_5",
"original": "AVERAGE_POOL_2D",
"type": "Pool"
},
{
"c_id": [
1
],
"extras": {
"n_macc": 9376,
"n_params": 160,
"psize": 640,
"rom_output": {
"c_size": 4160,
"fmt": {
"format": "float"
},
"shape": [
13,
16,
5
]
},
"rom_size": 640
},
"id": 6,
"inputs": [
"pool_5"
],
"name": "conv2d_6",
"original": "DEPTHWISE_CONV_2D",
"type": "Conv2D"
},
{
"c_id": [
2,
3
],
"extras": {
"n_macc": 16656,
"n_params": 272,
"psize": 1088,
"rom_output": {
"c_size": 4160,
"fmt": {
"format": "float"
},
"shape": [
13,
16,
5
]
},
"rom_size": 1088
},
"id": 7,
"inputs": [
"conv2d_6"
],
"name": "conv2d_7",
"original": "CONV_2D",
"type": "Conv2D"
},
{
"c_id": [],
"extras": {
"n_macc": 1040,
"n_params": 0,
"psize": 0,
"rom_output": {
"c_size": 4160,
"fmt": {
"format": "float"
},
"shape": [
13,
16,
5
]
},
"rom_size": 0
},
"id": 7,
"inputs": [
"conv2d_7"
],
"name": "nl_7_nl",
"original": "CONV_2D",
"type": "Nonlinearity"
},
{
"c_id": [
4
],
"extras": {
"n_macc": 9376,
"n_params": 160,
"psize": 640,
"rom_output": {
"c_size": 4160,
"fmt": {
"format": "float"
},
"shape": [
13,
16,
5
]
},
"rom_size": 640
},
"id": 8,
"inputs": [
"nl_7_nl"
],
"name": "conv2d_8",
"original": "DEPTHWISE_CONV_2D",
"type": "Conv2D"
},
{
"c_id": [
5
],
"extras": {
"n_macc": 16656,
"n_params": 272,
"psize": 1088,
"rom_output": {
"c_size": 4160,
"fmt": {
"format": "float"
},
"shape": [
13,
16,
5
]
},
"rom_size": 1088
},
"id": 9,
"inputs": [
"conv2d_8"
],
"name": "conv2d_9",
"original": "CONV_2D",
"type": "Conv2D"
},
{
"c_id": [
6,
7
],
"extras": {
"n_macc": 1040,
"n_params": 0,
"psize": 0,
"rom_output": {
"c_size": 4160,
"fmt": {
"format": "float"
},
"shape": [
13,
16,
5
]
},
"rom_size": 0
},
"id": 10,
"inputs": [
"pool_5",
"conv2d_9"
],
"name": "eltwise_10",
"original": "ADD",
"type": "Eltwise"
},
{
"c_id": [],
"extras": {
"n_macc": 1040,
"n_params": 0,
"psize": 0,
"rom_output": {
"c_size": 4160,
"fmt": {
"format": "float"
},
"shape": [
13,
16,
5
]
},
"rom_size": 0
},
"id": 10,
"inputs": [
"eltwise_10"
],
"name": "nl_10_nl",
"original": "ADD",
"type": "Nonlinearity"
},
{
"c_id": [
9
],
"extras": {
"n_macc": 3040,
"n_params": 160,
"psize": 640,
"rom_output": {
"c_size": 1344,
"fmt": {
"format": "float"
},
"shape": [
7,
16,
3
]
},
"rom_size": 640
},
"id": 11,
"inputs": [
"nl_10_nl"
],
"name": "conv2d_11",
"original": "DEPTHWISE_CONV_2D",
"type": "Conv2D"
},
{
"c_id": [
10,
11
],
"extras": {
"n_macc": 10784,
"n_params": 544,
"psize": 2176,
"rom_output": {
"c_size": 2688,
"fmt": {
"format": "float"
},
"shape": [
7,
32,
3
]
},
"rom_size": 2176
},
"id": 12,
"inputs": [
"conv2d_11"
],
"name": "conv2d_12",
"original": "CONV_2D",
"type": "Conv2D"
},
{
"c_id": [],
"extras": {
"n_macc": 672,
"n_params": 0,
"psize": 0,
"rom_output": {
"c_size": 2688,
"fmt": {
"format": "float"
},
"shape": [
7,
32,
3
]
},
"rom_size": 0
},
"id": 12,
"inputs": [
"conv2d_12"
],
"name": "nl_12_nl",
"original": "CONV_2D",
"type": "Nonlinearity"
},
{
"c_id": [
12
],
"extras": {
"n_macc": 6080,
"n_params": 320,
"psize": 1280,
"rom_output": {
"c_size": 2688,
"fmt": {
"format": "float"
},
"shape": [
7,
32,
3
]
},
"rom_size": 1280
},
"id": 13,
"inputs": [
"nl_12_nl"
],
"name": "conv2d_13",
"original": "DEPTHWISE_CONV_2D",
"type": "Conv2D"
},
{
"c_id": [
13
],
"extras": {
"n_macc": 21536,
"n_params": 1056,
"psize": 4224,
"rom_output": {
"c_size": 2688,
"fmt": {
"format": "float"
},
"shape": [
7,
32,
3
]
},
"rom_size": 4224
},
"id": 14,
"inputs": [
"conv2d_13"
],
"name": "conv2d_14",
"original": "CONV_2D",
"type": "Conv2D"
},
{
"c_id": [
8
],
"extras": {
"n_macc": 10784,
"n_params": 544,
"psize": 2176,
"rom_output": {
"c_size": 2688,
"fmt": {
"format": "float"
},
"shape": [
7,
32,
3
]
},
"rom_size": 2176
},
"id": 15,
"inputs": [
"nl_10_nl"
],
"name": "conv2d_15",
"original": "CONV_2D",
"type": "Conv2D"
},
{
"c_id": [
14,
15
],
"extras": {
"n_macc": 672,
"n_params": 0,
"psize": 0,
"rom_output": {
"c_size": 2688,
"fmt": {
"format": "float"
},
"shape": [
7,
32,
3
]
},
"rom_size": 0
},
"id": 16,
"inputs": [
"conv2d_15",
"conv2d_14"
],
"name": "eltwise_16",
"original": "ADD",
"type": "Eltwise"
},
{
"c_id": [],
"extras": {
"n_macc": 672,
"n_params": 0,
"psize": 0,
"rom_output": {
"c_size": 2688,
"fmt": {
"format": "float"
},
"shape": [
7,
32,
3
]
},
"rom_size": 0
},
"id": 16,
"inputs": [
"eltwise_16"
],
"name": "nl_16_nl",
"original": "ADD",
"type": "Nonlinearity"
},
{
"c_id": [
16
],
"extras": {
"n_macc": 672,
"n_params": 0,
"psize": 0,
"rom_output": {
"c_size": 128,
"fmt": {
"format": "float"
},
"shape": [
1,
32,
1
]
},
"rom_size": 0
},
"id": 17,
"inputs": [
"nl_16_nl"
],
"name": "pool_17",
"original": "MEAN",
"type": "Pool"
},
{
"c_id": [],
"extras": {
"n_macc": 0,
"n_params": 0,
"psize": 0,
"rom_size": 0
},
"id": 17,
"inputs": [
"pool_17"
],
"name": "reshape_17_reshape",
"original": "MEAN",
"type": "Reshape"
},
{
"c_id": [
17,
18
],
"extras": {
"n_macc": 0,
"n_params": 512,
"psize": 2048,
"rom_size": 384
},
"id": 18,
"inputs": [],
"name": "arith_constant19",
"original": "",
"type": "Placeholder"
},
{
"c_id": [],
"extras": {
"n_macc": 0,
"n_params": 16,
"psize": 64,
"rom_size": 0
},
"id": 18,
"inputs": [],
"name": "arith_constant21",
"original": "",
"type": "Placeholder"
},
{
"c_id": [],
"extras": {
"n_macc": 528,
"n_params": 0,
"psize": 0,
"rom_output": {
"c_size": 64,
"fmt": {
"format": "float"
},
"shape": [
16
]
},
"rom_size": 0
},
"id": 18,
"inputs": [
"reshape_17_reshape",
"arith_constant19",
"arith_constant21"
],
"name": "gemm_18",
"original": "FULLY_CONNECTED",
"type": "Gemm"
},
{
"c_id": [],
"extras": {
"n_macc": 16,
"n_params": 0,
"psize": 0,
"rom_output": {
"c_size": 64,
"fmt": {
"format": "float"
},
"shape": [
16
]
},
"rom_size": 0
},
"id": 18,
"inputs": [
"gemm_18"
],
"name": "nl_18_nl",
"original": "FULLY_CONNECTED",
"type": "Nonlinearity"
},
{
"c_id": [
19
],
"extras": {
"n_macc": 0,
"n_params": 32,
"psize": 128,
"rom_size": 88
},
"id": 19,
"inputs": [],
"name": "arith_constant18",
"original": "",
"type": "Placeholder"
},
{
"c_id": [],
"extras": {
"n_macc": 0,
"n_params": 2,
"psize": 8,
"rom_size": 0
},
"id": 19,
"inputs": [],
"name": "arith_constant20",
"original": "",
"type": "Placeholder"
},
{
"c_id": [],
"extras": {
"n_macc": 34,
"n_params": 0,
"psize": 0,
"rom_output": {
"c_size": 8,
"fmt": {
"format": "float"
},
"shape": [
2
]
},
"rom_size": 0
},
"id": 19,
"inputs": [
"nl_18_nl",
"arith_constant18",
"arith_constant20"
],
"name": "gemm_19",
"original": "FULLY_CONNECTED",
"type": "Gemm"
},
{
"c_id": [
20
],
"extras": {
"n_macc": 30,
"n_params": 0,
"psize": 0,
"rom_output": {
"c_size": 8,
"fmt": {
"format": "float"
},
"shape": [
2
]
},
"rom_size": 0
},
"id": 20,
"inputs": [
"gemm_19"
],
"name": "nl_20",
"original": "SOFTMAX",
"type": "Nonlinearity"
}
],
"model_files": [
"D:\\Job_Work\\Code\\Z_Python\\myEnv\\model2.tflite"
],
"model_n_params": 4210,
"model_name": "model2",
"model_size": 16840,
"model_type": "tflite",
"name": "model",
"outputs": [
"nl_20"
],
"ram_io_size": [
0,
0
],
"ram_size": 11904,
"report_version": 1.1,
"rom_cfact": 1.0,
"rom_heap_inspector": 2048,
"rom_inputs": [
{
"c_size": 1040,
"c_type": "float",
"name": "serving_default_input0"
}
],
"rom_n_macc": 156480,
"rom_outputs": [
{
"c_size": 8,
"c_type": "float",
"name": "nl_20"
}
],
"rom_size": 14936,
"strategy": "",
"tools_api_version": "2.0.0-20049",
"tools_version": "2.0.0-20049",
"val_error": -1.0,
"val_error_desc": "None (None) #-1",
"val_metrics": []
}

View File

@ -14,8 +14,8 @@ extern "C"
int AiModel(uint8_t *input);
int aiInit(void);
extern const uint8_t test[1024];
extern float inputBuf[1024];
extern float inputBuf[AI_MODEL_IN_1_SIZE] ;
extern const uint8_t test[AI_MODEL_IN_1_SIZE];
extern float aiInData[AI_MODEL_IN_1_SIZE];
extern float aiOutData[AI_MODEL_OUT_1_SIZE];

View File

@ -22,10 +22,10 @@ AI_ALIGNED(32)
ai_u8 activations[AI_MODEL_DATA_ACTIVATIONS_SIZE];
AI_ALIGNED(32)
const uint8_t test[1024] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 46, 99, 64, 42, 20, 7, 0, 0, 3, 5, 37, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 9, 18, 46, 178, 171, 223, 198, 210, 147, 30, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 23, 56, 78, 79, 84, 62, 77, 109, 188, 138, 97, 61, 18, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 35, 60, 78, 55, 30, 35, 33, 35, 6, 0, 7, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 0, 17, 25, 20, 16, 20, 5, 0, 5, 18, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 60, 32, 27, 23, 10, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 16, 46, 37, 46, 38, 12, 6, 0, 0, 0, 15, 4, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 7, 17, 51, 40, 45, 43, 49, 28, 15, 5, 6, 9, 11, 32, 11, 10, 37, 54, 15, 9, 24, 15, 10, 4, 4, 7, 10, 61, 0, 0, 0, 5, 12, 43, 52, 39, 61, 62, 36, 24, 13, 9, 5, 9, 18, 33, 30, 17, 55, 33, 37, 97, 100, 93, 37, 73, 53, 45, 24, 105, 0, 0, 0, 7, 23, 62, 85, 50, 58, 42, 38, 28, 18, 21, 11, 14, 20, 49, 59, 46, 68, 103, 118, 184, 72, 47, 24, 9, 26, 120, 0, 170, 0, 0, 4, 14, 53, 79, 88, 56, 80, 48, 43, 41, 23, 17, 13, 33, 39, 12, 6, 15, 45, 53, 31, 90, 105, 125, 59, 36, 32, 10, 9, 6, 0, 0, 3, 14, 25, 57, 83, 43, 26, 23, 16, 18, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 39, 55, 26, 25, 24, 20, 17, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 29, 77, 58, 45, 29, 23, 38, 30, 8, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 18, 14, 32, 45, 51, 46, 56, 49, 32, 31, 26, 29, 7, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 17, 95, 96, 93, 99, 104, 108, 88, 63, 130, 64, 35, 13, 5, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 21, 64, 89, 90, 90, 94, 104, 99, 84, 72, 31, 19, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 24, 64, 154, 128, 150, 179, 150, 167, 120, 76, 68, 33, 12, 10, 7, 14, 0, 0, 5, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 34, 85, 119, 70, 75, 131, 160, 152, 88, 54, 40, 28, 8, 5, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 42, 79, 51, 46, 59, 73, 72, 72, 100, 75, 89, 74, 42, 12, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 7, 15, 18, 18, 29, 40, 40, 36, 43, 56, 88, 57, 22, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 17, 40, 46, 57, 52, 53, 56, 65, 35, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 36, 51, 85, 72, 73, 88, 67, 61, 49, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 19, 56, 55, 53, 28, 36, 39, 24, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 14, 35, 64, 79, 64, 89, 44, 7, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 22, 24, 53, 95, 92, 69, 20, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 20, 73, 159, 109, 98, 34, 14, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 22, 55, 51, 69, 49, 49, 23, 11, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 33, 54, 64, 72, 66, 21, 13, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 18, 32, 35, 76, 64, 18, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 17, 15, 25, 25, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
const uint8_t test[AI_MODEL_IN_1_SIZE] = {21, 6, 0, 5, 5, 8, 16, 35, 15, 57, 50, 37, 30, 31, 39, 37, 46, 56, 54, 55, 65, 88, 90, 85, 41, 21, 52, 20, 6, 7, 7, 10, 19, 46, 14, 44, 58, 66, 64, 42, 52, 70, 59, 55, 66, 66, 91, 102, 110, 97, 61, 24, 30, 5, 9, 12, 8, 13, 34, 39, 16, 73, 42, 36, 36, 31, 44, 44, 54, 55, 44, 53, 60, 78, 77, 76, 54, 26, 34, 37, 14, 18, 9, 12, 42, 42, 13, 24, 32, 26, 25, 33, 22, 28, 41, 39, 60, 64, 67, 64, 65, 66, 82, 55, 0, 19, 0, 0, 0, 0, 6, 20, 0, 7, 11, 18, 9, 5, 10, 17, 20, 18, 18, 33, 43, 70, 83, 99, 97, 130, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 10, 5, 0, 0, 0, 0, 0, 0, 0, 14, 12, 30, 25, 34, 52, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 17, 40, 74, 56, 0, 0, 0, 7, 13, 18, 43, 147, 202, 137, 44, 15, 8, 0, 5, 5, 6, 6, 6, 7, 7, 7, 11, 22, 20, 24, 0, 0, 0, 0, 0, 0, 0, 20, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5};
AI_ALIGNED(32)
float inputBuf[1024] = {0.0f};
float inputBuf[AI_MODEL_IN_1_SIZE] = {0.0f};
void PictureCharArrayToFloat(const uint8_t *srcBuf, float *dstBuf, int len)
{
@ -38,7 +38,7 @@ void PictureCharArrayToFloat(const uint8_t *srcBuf, float *dstBuf, int len)
#define CLIP_MIN 0.0f
#define CLIP_MAX 300.0f
#define EPSILON 1e-6f
#define INPUT_SIZE 1024
#define INPUT_SIZE AI_MODEL_IN_1_SIZE
// Preprocess a single sample (input: array of 1024 floats, output: array of 1024 floats)
float clipped[INPUT_SIZE] = {0};
@ -148,9 +148,9 @@ int AiModel(uint8_t *input)
float max_confidence = 0.0f;
rt_kprintf("\nStart Test Code\n");
PictureCharArrayToFloat(input, inputBuf, 1024);
PictureCharArrayToFloat(input, inputBuf, AI_MODEL_IN_1_SIZE);
preprocess_data((const float *)inputBuf, aiInData, 1024);
preprocess_data((const float *)inputBuf, aiInData, AI_MODEL_IN_1_SIZE);
Start_Tick = rt_tick_get();
aiRun(aiInData, aiOutData);

File diff suppressed because one or more lines are too long

View File

@ -135,7 +135,7 @@
<SetRegEntry>
<Number>0</Number>
<Key>DLGUARM</Key>
<Name>d</Name>
<Name></Name>
</SetRegEntry>
<SetRegEntry>
<Number>0</Number>
@ -153,7 +153,40 @@
<Name>-U-O142 -O2254 -S0 -C0 -N00("ARM CoreSight SW-DP") -D00(2BA01477) -L00(0) -TO18 -TC10000000 -TP21 -TDS8007 -TDT0 -TDC1F -TIEFFFFFFFF -TIP8 -FO7 -FD20000000 -FC800 -FN1 -FF0STM32F4xx_1024.FLM -FS08000000 -FL0100000 -FP0($$Device:STM32F405RGTx$CMSIS\Flash\STM32F4xx_1024.FLM)</Name>
</SetRegEntry>
</TargetDriverDllRegistry>
<Breakpoint/>
<Breakpoint>
<Bp>
<Number>0</Number>
<Type>0</Type>
<LineNumber>196</LineNumber>
<EnabledFlag>1</EnabledFlag>
<Address>134234030</Address>
<ByteObject>0</ByteObject>
<HtxType>0</HtxType>
<ManyObjects>0</ManyObjects>
<SizeOfObject>0</SizeOfObject>
<BreakByAccess>0</BreakByAccess>
<BreakIfRCount>1</BreakIfRCount>
<Filename>..\Core\Src\myEdge_ai_app.c</Filename>
<ExecCommand></ExecCommand>
<Expression>\\XM_01\../Core/Src/myEdge_ai_app.c\196</Expression>
</Bp>
<Bp>
<Number>1</Number>
<Type>0</Type>
<LineNumber>114</LineNumber>
<EnabledFlag>1</EnabledFlag>
<Address>134223284</Address>
<ByteObject>0</ByteObject>
<HtxType>0</HtxType>
<ManyObjects>0</ManyObjects>
<SizeOfObject>0</SizeOfObject>
<BreakByAccess>0</BreakByAccess>
<BreakIfRCount>1</BreakIfRCount>
<Filename>../Core/Src/main.c</Filename>
<ExecCommand></ExecCommand>
<Expression>\\XM_01\../Core/Src/main.c\114</Expression>
</Bp>
</Breakpoint>
<WatchWindow1>
<Ww>
<count>0</count>
@ -258,6 +291,18 @@
<tvExp>0</tvExp>
<tvExpOptDlg>0</tvExpOptDlg>
<bDave2>0</bDave2>
<PathWithFileName>..\Core\Src\myMattress_ctrl.c</PathWithFileName>
<FilenameWithoutPath>myMattress_ctrl.c</FilenameWithoutPath>
<RteFlg>0</RteFlg>
<bShared>0</bShared>
</File>
<File>
<GroupNumber>2</GroupNumber>
<FileNumber>4</FileNumber>
<FileType>1</FileType>
<tvExp>0</tvExp>
<tvExpOptDlg>0</tvExpOptDlg>
<bDave2>0</bDave2>
<PathWithFileName>../Core/Src/main.c</PathWithFileName>
<FilenameWithoutPath>main.c</FilenameWithoutPath>
<RteFlg>0</RteFlg>
@ -265,7 +310,7 @@
</File>
<File>
<GroupNumber>2</GroupNumber>
<FileNumber>4</FileNumber>
<FileNumber>5</FileNumber>
<FileType>1</FileType>
<tvExp>0</tvExp>
<tvExpOptDlg>0</tvExpOptDlg>
@ -277,7 +322,7 @@
</File>
<File>
<GroupNumber>2</GroupNumber>
<FileNumber>5</FileNumber>
<FileNumber>6</FileNumber>
<FileType>1</FileType>
<tvExp>0</tvExp>
<tvExpOptDlg>0</tvExpOptDlg>
@ -289,7 +334,7 @@
</File>
<File>
<GroupNumber>2</GroupNumber>
<FileNumber>6</FileNumber>
<FileNumber>7</FileNumber>
<FileType>1</FileType>
<tvExp>0</tvExp>
<tvExpOptDlg>0</tvExpOptDlg>
@ -301,7 +346,7 @@
</File>
<File>
<GroupNumber>2</GroupNumber>
<FileNumber>7</FileNumber>
<FileNumber>8</FileNumber>
<FileType>1</FileType>
<tvExp>0</tvExp>
<tvExpOptDlg>0</tvExpOptDlg>
@ -311,18 +356,6 @@
<RteFlg>0</RteFlg>
<bShared>0</bShared>
</File>
<File>
<GroupNumber>2</GroupNumber>
<FileNumber>8</FileNumber>
<FileType>1</FileType>
<tvExp>0</tvExp>
<tvExpOptDlg>0</tvExpOptDlg>
<bDave2>0</bDave2>
<PathWithFileName>..\Core\Src\myMattress_ctrl.c</PathWithFileName>
<FilenameWithoutPath>myMattress_ctrl.c</FilenameWithoutPath>
<RteFlg>0</RteFlg>
<bShared>0</bShared>
</File>
</Group>
<Group>
@ -721,6 +754,14 @@
</File>
</Group>
<Group>
<GroupName>::CMSIS</GroupName>
<tvExp>0</tvExp>
<tvExpOptDlg>0</tvExpOptDlg>
<cbSel>0</cbSel>
<RteFlg>1</RteFlg>
</Group>
<Group>
<GroupName>Middlewares/RT-Thread/RTOS/shell</GroupName>
<tvExp>0</tvExp>
@ -728,7 +769,7 @@
<cbSel>0</cbSel>
<RteFlg>0</RteFlg>
<File>
<GroupNumber>9</GroupNumber>
<GroupNumber>10</GroupNumber>
<FileNumber>38</FileNumber>
<FileType>1</FileType>
<tvExp>0</tvExp>
@ -740,7 +781,7 @@
<bShared>0</bShared>
</File>
<File>
<GroupNumber>9</GroupNumber>
<GroupNumber>10</GroupNumber>
<FileNumber>39</FileNumber>
<FileType>1</FileType>
<tvExp>0</tvExp>
@ -752,7 +793,7 @@
<bShared>0</bShared>
</File>
<File>
<GroupNumber>9</GroupNumber>
<GroupNumber>10</GroupNumber>
<FileNumber>40</FileNumber>
<FileType>1</FileType>
<tvExp>0</tvExp>
@ -764,7 +805,7 @@
<bShared>0</bShared>
</File>
<File>
<GroupNumber>9</GroupNumber>
<GroupNumber>10</GroupNumber>
<FileNumber>41</FileNumber>
<FileType>1</FileType>
<tvExp>0</tvExp>
@ -776,7 +817,7 @@
<bShared>0</bShared>
</File>
<File>
<GroupNumber>9</GroupNumber>
<GroupNumber>10</GroupNumber>
<FileNumber>42</FileNumber>
<FileType>1</FileType>
<tvExp>0</tvExp>
@ -796,7 +837,7 @@
<cbSel>0</cbSel>
<RteFlg>0</RteFlg>
<File>
<GroupNumber>10</GroupNumber>
<GroupNumber>11</GroupNumber>
<FileNumber>43</FileNumber>
<FileType>2</FileType>
<tvExp>0</tvExp>
@ -808,7 +849,7 @@
<bShared>0</bShared>
</File>
<File>
<GroupNumber>10</GroupNumber>
<GroupNumber>11</GroupNumber>
<FileNumber>44</FileNumber>
<FileType>1</FileType>
<tvExp>0</tvExp>
@ -828,7 +869,7 @@
<cbSel>0</cbSel>
<RteFlg>0</RteFlg>
<File>
<GroupNumber>11</GroupNumber>
<GroupNumber>12</GroupNumber>
<FileNumber>45</FileNumber>
<FileType>1</FileType>
<tvExp>0</tvExp>
@ -840,7 +881,7 @@
<bShared>0</bShared>
</File>
<File>
<GroupNumber>11</GroupNumber>
<GroupNumber>12</GroupNumber>
<FileNumber>46</FileNumber>
<FileType>1</FileType>
<tvExp>0</tvExp>
@ -852,7 +893,7 @@
<bShared>0</bShared>
</File>
<File>
<GroupNumber>11</GroupNumber>
<GroupNumber>12</GroupNumber>
<FileNumber>47</FileNumber>
<FileType>1</FileType>
<tvExp>0</tvExp>
@ -864,7 +905,7 @@
<bShared>0</bShared>
</File>
<File>
<GroupNumber>11</GroupNumber>
<GroupNumber>12</GroupNumber>
<FileNumber>48</FileNumber>
<FileType>1</FileType>
<tvExp>0</tvExp>
@ -876,7 +917,7 @@
<bShared>0</bShared>
</File>
<File>
<GroupNumber>11</GroupNumber>
<GroupNumber>12</GroupNumber>
<FileNumber>49</FileNumber>
<FileType>1</FileType>
<tvExp>0</tvExp>
@ -888,7 +929,7 @@
<bShared>0</bShared>
</File>
<File>
<GroupNumber>11</GroupNumber>
<GroupNumber>12</GroupNumber>
<FileNumber>50</FileNumber>
<FileType>1</FileType>
<tvExp>0</tvExp>
@ -900,7 +941,7 @@
<bShared>0</bShared>
</File>
<File>
<GroupNumber>11</GroupNumber>
<GroupNumber>12</GroupNumber>
<FileNumber>51</FileNumber>
<FileType>1</FileType>
<tvExp>0</tvExp>
@ -912,7 +953,7 @@
<bShared>0</bShared>
</File>
<File>
<GroupNumber>11</GroupNumber>
<GroupNumber>12</GroupNumber>
<FileNumber>52</FileNumber>
<FileType>1</FileType>
<tvExp>0</tvExp>
@ -924,7 +965,7 @@
<bShared>0</bShared>
</File>
<File>
<GroupNumber>11</GroupNumber>
<GroupNumber>12</GroupNumber>
<FileNumber>53</FileNumber>
<FileType>1</FileType>
<tvExp>0</tvExp>
@ -936,7 +977,7 @@
<bShared>0</bShared>
</File>
<File>
<GroupNumber>11</GroupNumber>
<GroupNumber>12</GroupNumber>
<FileNumber>54</FileNumber>
<FileType>1</FileType>
<tvExp>0</tvExp>
@ -948,7 +989,7 @@
<bShared>0</bShared>
</File>
<File>
<GroupNumber>11</GroupNumber>
<GroupNumber>12</GroupNumber>
<FileNumber>55</FileNumber>
<FileType>1</FileType>
<tvExp>0</tvExp>
@ -960,7 +1001,7 @@
<bShared>0</bShared>
</File>
<File>
<GroupNumber>11</GroupNumber>
<GroupNumber>12</GroupNumber>
<FileNumber>56</FileNumber>
<FileType>1</FileType>
<tvExp>0</tvExp>
@ -972,7 +1013,7 @@
<bShared>0</bShared>
</File>
<File>
<GroupNumber>11</GroupNumber>
<GroupNumber>12</GroupNumber>
<FileNumber>57</FileNumber>
<FileType>1</FileType>
<tvExp>0</tvExp>
@ -984,7 +1025,7 @@
<bShared>0</bShared>
</File>
<File>
<GroupNumber>11</GroupNumber>
<GroupNumber>12</GroupNumber>
<FileNumber>58</FileNumber>
<FileType>1</FileType>
<tvExp>0</tvExp>
@ -996,7 +1037,7 @@
<bShared>0</bShared>
</File>
<File>
<GroupNumber>11</GroupNumber>
<GroupNumber>12</GroupNumber>
<FileNumber>59</FileNumber>
<FileType>1</FileType>
<tvExp>0</tvExp>
@ -1008,7 +1049,7 @@
<bShared>0</bShared>
</File>
<File>
<GroupNumber>11</GroupNumber>
<GroupNumber>12</GroupNumber>
<FileNumber>60</FileNumber>
<FileType>1</FileType>
<tvExp>0</tvExp>
@ -1020,7 +1061,7 @@
<bShared>0</bShared>
</File>
<File>
<GroupNumber>11</GroupNumber>
<GroupNumber>12</GroupNumber>
<FileNumber>61</FileNumber>
<FileType>1</FileType>
<tvExp>0</tvExp>
@ -1033,12 +1074,4 @@
</File>
</Group>
<Group>
<GroupName>::CMSIS</GroupName>
<tvExp>0</tvExp>
<tvExpOptDlg>0</tvExpOptDlg>
<cbSel>0</cbSel>
<RteFlg>1</RteFlg>
</Group>
</ProjectOpt>

View File

@ -360,7 +360,7 @@
</VariousControls>
</Aads>
<LDads>
<umfTarg>1</umfTarg>
<umfTarg>0</umfTarg>
<Ropi>0</Ropi>
<Rwpi>0</Rwpi>
<noStLib>0</noStLib>
@ -397,6 +397,11 @@
<FileType>1</FileType>
<FilePath>..\Core\Src\myEdge_ai_app.c</FilePath>
</File>
<File>
<FileName>myMattress_ctrl.c</FileName>
<FileType>1</FileType>
<FilePath>..\Core\Src\myMattress_ctrl.c</FilePath>
</File>
<File>
<FileName>main.c</FileName>
<FileType>1</FileType>
@ -473,11 +478,6 @@
<FileType>1</FileType>
<FilePath>../Core/Src/stm32f4xx_hal_msp.c</FilePath>
</File>
<File>
<FileName>myMattress_ctrl.c</FileName>
<FileType>1</FileType>
<FilePath>..\Core\Src\myMattress_ctrl.c</FilePath>
</File>
</Files>
</Group>
<Group>
@ -1461,6 +1461,9 @@
</File>
</Files>
</Group>
<Group>
<GroupName>::CMSIS</GroupName>
</Group>
<Group>
<GroupName>Middlewares/RT-Thread/RTOS/shell</GroupName>
<GroupOption>
@ -3014,9 +3017,6 @@
</File>
</Files>
</Group>
<Group>
<GroupName>::CMSIS</GroupName>
</Group>
</Groups>
</Target>
</Targets>

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -2,7 +2,7 @@
******************************************************************************
* @file model.h
* @author AST Embedded Analytics Research Platform
* @date 2025-05-20T15:23:57+0800
* @date 2025-05-26T11:06:58+0800
* @brief AI Tool Automatic Code Generator for Embedded NN computing
******************************************************************************
* @attention
@ -23,7 +23,7 @@
/******************************************************************************/
#define AI_MODEL_MODEL_NAME "model"
#define AI_MODEL_ORIGIN_MODEL_NAME "model"
#define AI_MODEL_ORIGIN_MODEL_NAME "model2"
/******************************************************************************/
#define AI_MODEL_ACTIVATIONS_ALIGNMENT (4)
@ -44,9 +44,9 @@ AI_DEPRECATED
AI_MODEL_IN_1_SIZE_BYTES, \
}
#define AI_MODEL_IN_1_FORMAT (AI_BUFFER_FORMAT_FLOAT)
#define AI_MODEL_IN_1_CHANNEL (1024)
#define AI_MODEL_IN_1_SIZE (1024)
#define AI_MODEL_IN_1_SIZE_BYTES (4096)
#define AI_MODEL_IN_1_CHANNEL (260)
#define AI_MODEL_IN_1_SIZE (260)
#define AI_MODEL_IN_1_SIZE_BYTES (1040)
/******************************************************************************/
#define AI_MODEL_OUT_NUM (1)
@ -62,12 +62,12 @@ AI_DEPRECATED
AI_MODEL_OUT_1_SIZE_BYTES, \
}
#define AI_MODEL_OUT_1_FORMAT (AI_BUFFER_FORMAT_FLOAT)
#define AI_MODEL_OUT_1_CHANNEL (3)
#define AI_MODEL_OUT_1_SIZE (3)
#define AI_MODEL_OUT_1_SIZE_BYTES (12)
#define AI_MODEL_OUT_1_CHANNEL (2)
#define AI_MODEL_OUT_1_SIZE (2)
#define AI_MODEL_OUT_1_SIZE_BYTES (8)
/******************************************************************************/
#define AI_MODEL_N_NODES (35)
#define AI_MODEL_N_NODES (21)
AI_API_DECLARE_BEGIN

View File

@ -3,7 +3,7 @@
******************************************************************************
* @file model_config.h
* @author AST Embedded Analytics Research Platform
* @date 2025-05-20T15:23:57+0800
* @date 2025-05-26T11:06:58+0800
* @brief AI Tool Automatic Code Generator for Custom Layers Implementation
******************************************************************************
* @attention

View File

@ -2,7 +2,7 @@
******************************************************************************
* @file model_data.c
* @author AST Embedded Analytics Research Platform
* @date 2025-05-20T15:23:57+0800
* @date 2025-05-26T11:06:58+0800
* @brief AI Tool Automatic Code Generator for Embedded NN computing
******************************************************************************
* @attention
@ -21,13 +21,13 @@
AI_API_DECLARE_BEGIN
ai_buffer g_model_data_map_activations[AI_MODEL_DATA_ACTIVATIONS_COUNT] = {
AI_BUFFER_INIT(AI_FLAG_NONE, AI_BUFFER_FORMAT_U8,
AI_BUFFER_SHAPE_INIT(AI_SHAPE_BCWH, 4, 1, 37120, 1, 1),
37120, NULL, NULL), /* heap_overlay_pool */
AI_BUFFER_SHAPE_INIT(AI_SHAPE_BCWH, 4, 1, 11904, 1, 1),
11904, NULL, NULL), /* heap_overlay_pool */
};
ai_buffer g_model_data_map_weights[AI_MODEL_DATA_WEIGHTS_COUNT] = {
AI_BUFFER_INIT(AI_FLAG_NONE, AI_BUFFER_FORMAT_U8,
AI_BUFFER_SHAPE_INIT(AI_SHAPE_BCWH, 4, 1, 29372, 1, 1),
29372, NULL, s_model_weights_array_u64), /* weights_array */
AI_BUFFER_SHAPE_INIT(AI_SHAPE_BCWH, 4, 1, 14936, 1, 1),
14936, NULL, s_model_weights_array_u64), /* weights_array */
};

View File

@ -2,7 +2,7 @@
******************************************************************************
* @file model_data.h
* @author AST Embedded Analytics Research Platform
* @date 2025-05-20T15:23:57+0800
* @date 2025-05-26T11:06:58+0800
* @brief AI Tool Automatic Code Generator for Embedded NN computing
******************************************************************************
* Copyright (c) 2025 STMicroelectronics.
@ -32,7 +32,7 @@ AI_DEPRECATED
AI_API_DECLARE_BEGIN
extern const ai_u64 s_model_weights_array_u64[3672];
extern const ai_u64 s_model_weights_array_u64[1867];

File diff suppressed because it is too large Load Diff

View File

@ -2,7 +2,7 @@
******************************************************************************
* @file model_data_params.h
* @author AST Embedded Analytics Research Platform
* @date 2025-05-20T15:23:57+0800
* @date 2025-05-26T11:06:58+0800
* @brief AI Tool Automatic Code Generator for Embedded NN computing
******************************************************************************
* Copyright (c) 2025 STMicroelectronics.
@ -28,18 +28,18 @@
#define AI_MODEL_DATA_ACTIVATIONS_SIZES \
{ 37120, }
#define AI_MODEL_DATA_ACTIVATIONS_SIZE (37120)
{ 11904, }
#define AI_MODEL_DATA_ACTIVATIONS_SIZE (11904)
#define AI_MODEL_DATA_ACTIVATIONS_COUNT (1)
#define AI_MODEL_DATA_ACTIVATION_1_SIZE (37120)
#define AI_MODEL_DATA_ACTIVATION_1_SIZE (11904)
#define AI_MODEL_DATA_WEIGHTS_SIZES \
{ 29372, }
#define AI_MODEL_DATA_WEIGHTS_SIZE (29372)
{ 14936, }
#define AI_MODEL_DATA_WEIGHTS_SIZE (14936)
#define AI_MODEL_DATA_WEIGHTS_COUNT (1)
#define AI_MODEL_DATA_WEIGHT_1_SIZE (29372)
#define AI_MODEL_DATA_WEIGHT_1_SIZE (14936)

View File

@ -1,384 +1,264 @@
ST Edge AI Core v2.0.0-20049
Created date : 2025-05-20 15:23:59
Parameters : generate --target stm32f4 --name model -m D:/Job_Work/Code/Z_Python/myEnv/model.tflite --compression high --verbosity 1 -O ram --workspace C:/Users/admin/AppData/Local/Temp/mxAI_workspace33740368255090013021409726810218586 --output C:/Users/admin/.stm32cubemx/model_output
Created date : 2025-05-26 11:06:59
Parameters : generate --target stm32f4 --name model -m D:/Job_Work/Code/Z_Python/myEnv/model2.tflite --compression high --verbosity 1 -O ram --workspace C:/Users/admin/AppData/Local/Temp/mxAI_workspace84040893089870013881319616322495011 --output C:/Users/admin/.stm32cubemx/model_output
Exec/report summary (generate)
-------------------------------------------------------------------------------------------------------------
model file : D:\Job_Work\Code\Z_Python\myEnv\model.tflite
model file : D:\Job_Work\Code\Z_Python\myEnv\model2.tflite
type : tflite
c_name : model
compression : high
options : allocate-inputs, allocate-outputs
optimization : ram
target/series : stm32f4
workspace dir : C:\Users\admin\AppData\Local\Temp\mxAI_workspace33740368255090013021409726810218586
workspace dir : C:\Users\admin\AppData\Local\Temp\mxAI_workspace84040893089870013881319616322495011
output dir : C:\Users\admin\.stm32cubemx\model_output
model_fmt : float
model_name : model
model_hash : 0x391deb77460dcfce8d55e2fc3b80314e
params # : 8,419 items (32.89 KiB)
model_name : model2
model_hash : 0x02dd23f831c7bbf9c5b10eba7342e3d2
params # : 4,210 items (16.45 KiB)
-------------------------------------------------------------------------------------------------------------
input 1/1 : 'serving_default_input0', f32(1x1024), 4.00 KBytes, activations
output 1/1 : 'nl_30', f32(1x3), 12 Bytes, activations
macc : 957,040
weights (ro) : 29,372 B (28.68 KiB) (1 segment) / -4,304(-12.8%) vs float model
activations (rw) : 37,120 B (36.25 KiB) (1 segment) *
ram (total) : 37,120 B (36.25 KiB) = 37,120 + 0 + 0
input 1/1 : 'serving_default_input0', f32(1x260), 1.02 KBytes, activations
output 1/1 : 'nl_20', f32(1x2), 8 Bytes, activations
macc : 156,480
weights (ro) : 14,936 B (14.59 KiB) (1 segment) / -1,904(-11.3%) vs float model
activations (rw) : 11,904 B (11.62 KiB) (1 segment) *
ram (total) : 11,904 B (11.62 KiB) = 11,904 + 0 + 0
-------------------------------------------------------------------------------------------------------------
(*) 'input'/'output' buffers can be used from the activations buffer
Model name - model
------ ------------------------------------------ ---------------------- ------------- --------- ------------------------ --- ---------------- -------------------- ------------------------------------
m_id layer (type,original) oshape param/size macc connected to | c_size c_macc c_type
------ ------------------------------------------ ---------------------- ------------- --------- ------------------------ --- ---------------- -------------------- ------------------------------------
0 serving_default_input0 (Input, ) [b:1,c:1024] |
------ ------------------------------------------ ---------------------- ------------- --------- ------------------------ --- ---------------- -------------------- ------------------------------------
3 reshape_3 (Reshape, RESHAPE) [b:1,h:32,w:32,c:1] serving_default_input0 |
------ ------------------------------------------ ---------------------- ------------- --------- ------------------------ --- ---------------- -------------------- ------------------------------------
4 conv2d_4 (Conv2D, CONV_2D) [b:1,h:32,w:32,c:16] 160/640 147,472 reshape_3 | -640(-100.0%) -147,472(-100.0%)
nl_4_nl (Nonlinearity, CONV_2D) [b:1,h:32,w:32,c:16] 16,384 conv2d_4 | -16,384(-100.0%)
------ ------------------------------------------ ---------------------- ------------- --------- ------------------------ --- ---------------- -------------------- ------------------------------------
5 pool_5 (Pool, AVERAGE_POOL_2D) [b:1,h:16,w:16,c:16] 16,384 nl_4_nl | +640(+100.0%) +163,856(+1000.1%) Conv2D_[0]
------ ------------------------------------------ ---------------------- ------------- --------- ------------------------ --- ---------------- -------------------- ------------------------------------
6 conv2d_6 (Conv2D, DEPTHWISE_CONV_2D) [b:1,h:16,w:16,c:16] 160/640 36,880 pool_5 | Conv2D_[1]
------ ------------------------------------------ ---------------------- ------------- --------- ------------------------ --- ---------------- -------------------- ------------------------------------
7 conv2d_7 (Conv2D, CONV_2D) [b:1,h:16,w:16,c:16] 272/1,088 65,552 conv2d_6 | +4,096(+6.2%) Conv2D_/Nonlinearity_[2, 3]
nl_7_nl (Nonlinearity, CONV_2D) [b:1,h:16,w:16,c:16] 4,096 conv2d_7 | -4,096(-100.0%)
------ ------------------------------------------ ---------------------- ------------- --------- ------------------------ --- ---------------- -------------------- ------------------------------------
8 conv2d_8 (Conv2D, DEPTHWISE_CONV_2D) [b:1,h:16,w:16,c:16] 160/640 36,880 nl_7_nl | Conv2D_[4]
------ ------------------------------------------ ---------------------- ------------- --------- ------------------------ --- ---------------- -------------------- ------------------------------------
9 conv2d_9 (Conv2D, CONV_2D) [b:1,h:16,w:16,c:16] 272/1,088 65,552 conv2d_8 | Conv2D_[5]
------ ------------------------------------------ ---------------------- ------------- --------- ------------------------ --- ---------------- -------------------- ------------------------------------
10 eltwise_10 (Eltwise, ADD) [b:1,h:16,w:16,c:16] 4,096 pool_5 | +4,096(+100.0%) Eltwise/add_/Nonlinearity_[6, 7]
conv2d_9 |
nl_10_nl (Nonlinearity, ADD) [b:1,h:16,w:16,c:16] 4,096 eltwise_10 | -4,096(-100.0%)
------ ------------------------------------------ ---------------------- ------------- --------- ------------------------ --- ---------------- -------------------- ------------------------------------
11 conv2d_11 (Conv2D, DEPTHWISE_CONV_2D) [b:1,h:16,w:16,c:16] 160/640 36,880 nl_10_nl | Conv2D_[8]
------ ------------------------------------------ ---------------------- ------------- --------- ------------------------ --- ---------------- -------------------- ------------------------------------
12 conv2d_12 (Conv2D, CONV_2D) [b:1,h:16,w:16,c:16] 272/1,088 65,552 conv2d_11 | +4,096(+6.2%) Conv2D_/Nonlinearity_[9, 10]
nl_12_nl (Nonlinearity, CONV_2D) [b:1,h:16,w:16,c:16] 4,096 conv2d_12 | -4,096(-100.0%)
------ ------------------------------------------ ---------------------- ------------- --------- ------------------------ --- ---------------- -------------------- ------------------------------------
13 conv2d_13 (Conv2D, DEPTHWISE_CONV_2D) [b:1,h:16,w:16,c:16] 160/640 36,880 nl_12_nl | Conv2D_[11]
------ ------------------------------------------ ---------------------- ------------- --------- ------------------------ --- ---------------- -------------------- ------------------------------------
14 conv2d_14 (Conv2D, CONV_2D) [b:1,h:16,w:16,c:16] 272/1,088 65,552 conv2d_13 | Conv2D_[12]
------ ------------------------------------------ ---------------------- ------------- --------- ------------------------ --- ---------------- -------------------- ------------------------------------
15 eltwise_15 (Eltwise, ADD) [b:1,h:16,w:16,c:16] 4,096 nl_10_nl | +4,096(+100.0%) Eltwise/add_/Nonlinearity_[13, 14]
conv2d_14 |
nl_15_nl (Nonlinearity, ADD) [b:1,h:16,w:16,c:16] 4,096 eltwise_15 | -4,096(-100.0%)
------ ------------------------------------------ ---------------------- ------------- --------- ------------------------ --- ---------------- -------------------- ------------------------------------
16 conv2d_16 (Conv2D, DEPTHWISE_CONV_2D) [b:1,h:8,w:8,c:16] 160/640 9,232 nl_15_nl | Conv2D_[16]
------ ------------------------------------------ ---------------------- ------------- --------- ------------------------ --- ---------------- -------------------- ------------------------------------
17 conv2d_17 (Conv2D, CONV_2D) [b:1,h:8,w:8,c:32] 544/2,176 32,800 conv2d_16 | +2,048(+6.2%) Conv2D_/Nonlinearity_[17, 18]
nl_17_nl (Nonlinearity, CONV_2D) [b:1,h:8,w:8,c:32] 2,048 conv2d_17 | -2,048(-100.0%)
------ ------------------------------------------ ---------------------- ------------- --------- ------------------------ --- ---------------- -------------------- ------------------------------------
18 conv2d_18 (Conv2D, DEPTHWISE_CONV_2D) [b:1,h:8,w:8,c:32] 320/1,280 18,464 nl_17_nl | Conv2D_[19]
------ ------------------------------------------ ---------------------- ------------- --------- ------------------------ --- ---------------- -------------------- ------------------------------------
19 conv2d_19 (Conv2D, CONV_2D) [b:1,h:8,w:8,c:32] 1,056/4,224 65,568 conv2d_18 | Conv2D_[20]
------ ------------------------------------------ ---------------------- ------------- --------- ------------------------ --- ---------------- -------------------- ------------------------------------
20 conv2d_20 (Conv2D, CONV_2D) [b:1,h:8,w:8,c:32] 544/2,176 32,800 nl_15_nl | Conv2D_[15]
------ ------------------------------------------ ---------------------- ------------- --------- ------------------------ --- ---------------- -------------------- ------------------------------------
21 eltwise_21 (Eltwise, ADD) [b:1,h:8,w:8,c:32] 2,048 conv2d_20 | +2,048(+100.0%) Eltwise/add_/Nonlinearity_[21, 22]
conv2d_19 |
nl_21_nl (Nonlinearity, ADD) [b:1,h:8,w:8,c:32] 2,048 eltwise_21 | -2,048(-100.0%)
------ ------------------------------------------ ---------------------- ------------- --------- ------------------------ --- ---------------- -------------------- ------------------------------------
22 conv2d_22 (Conv2D, DEPTHWISE_CONV_2D) [b:1,h:8,w:8,c:32] 320/1,280 18,464 nl_21_nl | Conv2D_[23]
------ ------------------------------------------ ---------------------- ------------- --------- ------------------------ --- ---------------- -------------------- ------------------------------------
23 conv2d_23 (Conv2D, CONV_2D) [b:1,h:8,w:8,c:32] 1,056/4,224 65,568 conv2d_22 | +2,048(+3.1%) Conv2D_/Nonlinearity_[24, 25]
nl_23_nl (Nonlinearity, CONV_2D) [b:1,h:8,w:8,c:32] 2,048 conv2d_23 | -2,048(-100.0%)
------ ------------------------------------------ ---------------------- ------------- --------- ------------------------ --- ---------------- -------------------- ------------------------------------
24 conv2d_24 (Conv2D, DEPTHWISE_CONV_2D) [b:1,h:8,w:8,c:32] 320/1,280 18,464 nl_23_nl | Conv2D_[26]
------ ------------------------------------------ ---------------------- ------------- --------- ------------------------ --- ---------------- -------------------- ------------------------------------
25 conv2d_25 (Conv2D, CONV_2D) [b:1,h:8,w:8,c:32] 1,056/4,224 65,568 conv2d_24 | Conv2D_[27]
------ ------------------------------------------ ---------------------- ------------- --------- ------------------------ --- ---------------- -------------------- ------------------------------------
26 eltwise_26 (Eltwise, ADD) [b:1,h:8,w:8,c:32] 2,048 nl_21_nl | +2,048(+100.0%) Eltwise/add_/Nonlinearity_[28, 29]
conv2d_25 |
nl_26_nl (Nonlinearity, ADD) [b:1,h:8,w:8,c:32] 2,048 eltwise_26 | -2,048(-100.0%)
------ ------------------------------------------ ---------------------- ------------- --------- ------------------------ --- ---------------- -------------------- ------------------------------------
27 pool_27 (Pool, MEAN) [b:1,h:1,w:1,c:32] 2,048 nl_26_nl | Pool_[30]
reshape_27_reshape (Reshape, MEAN) [b:1,c:32] pool_27 |
------ ------------------------------------------ ---------------------- ------------- --------- ------------------------ --- ---------------- -------------------- ------------------------------------
28 arith_constant31 (Placeholder, ) [b:32,c:32] 1,024/4,096 | -3,392(-82.8%) +1,088(+100.0%) Dense_/Nonlinearity_[31, 32]
arith_constant33 (Placeholder, ) [b:32] 32/128 | -128(-100.0%)
gemm_28 (Gemm, FULLY_CONNECTED) [b:1,c:32] 1,056 reshape_27_reshape | -1,056(-100.0%)
arith_constant31 |
arith_constant33 |
nl_28_nl (Nonlinearity, FULLY_CONNECTED) [b:1,c:32] 32 gemm_28 | -32(-100.0%)
------ ------------------------------------------ ---------------------- ------------- --------- ------------------------ --- ---------------- -------------------- ------------------------------------
29 arith_constant30 (Placeholder, ) [b:3,c:32] 96/384 | -260(-67.7%) +99(+100.0%) Dense_[33]
arith_constant32 (Placeholder, ) [b:3] 3/12 | -12(-100.0%)
gemm_29 (Gemm, FULLY_CONNECTED) [b:1,c:3] 99 nl_28_nl | -99(-100.0%)
arith_constant30 |
arith_constant32 |
------ ------------------------------------------ ---------------------- ------------- --------- ------------------------ --- ---------------- -------------------- ------------------------------------
30 nl_30 (Nonlinearity, SOFTMAX) [b:1,c:3] 45 gemm_29 | Nonlinearity_[o][34]
------ ------------------------------------------ ---------------------- ------------- --------- ------------------------ --- ---------------- -------------------- ------------------------------------
model/c-model: macc=957,040/957,040 weights=33,676/29,372 -4,304(-12.8%) activations=--/37,120 io=--/0
Model name - model2
------ ------------------------------------------ ---------------------- ------------- -------- ------------------------ --- ---------------- ------------------- ------------------------------------
m_id layer (type,original) oshape param/size macc connected to | c_size c_macc c_type
------ ------------------------------------------ ---------------------- ------------- -------- ------------------------ --- ---------------- ------------------- ------------------------------------
0 serving_default_input0 (Input, ) [b:1,c:260] |
------ ------------------------------------------ ---------------------- ------------- -------- ------------------------ --- ---------------- ------------------- ------------------------------------
3 reshape_3 (Reshape, RESHAPE) [b:1,h:10,w:26,c:1] serving_default_input0 |
------ ------------------------------------------ ---------------------- ------------- -------- ------------------------ --- ---------------- ------------------- ------------------------------------
4 conv2d_4 (Conv2D, CONV_2D) [b:1,h:10,w:26,c:16] 160/640 37,456 reshape_3 | -640(-100.0%) -37,456(-100.0%)
nl_4_nl (Nonlinearity, CONV_2D) [b:1,h:10,w:26,c:16] 4,160 conv2d_4 | -4,160(-100.0%)
------ ------------------------------------------ ---------------------- ------------- -------- ------------------------ --- ---------------- ------------------- ------------------------------------
5 pool_5 (Pool, AVERAGE_POOL_2D) [b:1,h:5,w:13,c:16] 4,160 nl_4_nl | +640(+100.0%) +41,616(+1000.4%) Conv2D_[0]
------ ------------------------------------------ ---------------------- ------------- -------- ------------------------ --- ---------------- ------------------- ------------------------------------
6 conv2d_6 (Conv2D, DEPTHWISE_CONV_2D) [b:1,h:5,w:13,c:16] 160/640 9,376 pool_5 | Conv2D_[1]
------ ------------------------------------------ ---------------------- ------------- -------- ------------------------ --- ---------------- ------------------- ------------------------------------
7 conv2d_7 (Conv2D, CONV_2D) [b:1,h:5,w:13,c:16] 272/1,088 16,656 conv2d_6 | +1,040(+6.2%) Conv2D_/Nonlinearity_[2, 3]
nl_7_nl (Nonlinearity, CONV_2D) [b:1,h:5,w:13,c:16] 1,040 conv2d_7 | -1,040(-100.0%)
------ ------------------------------------------ ---------------------- ------------- -------- ------------------------ --- ---------------- ------------------- ------------------------------------
8 conv2d_8 (Conv2D, DEPTHWISE_CONV_2D) [b:1,h:5,w:13,c:16] 160/640 9,376 nl_7_nl | Conv2D_[4]
------ ------------------------------------------ ---------------------- ------------- -------- ------------------------ --- ---------------- ------------------- ------------------------------------
9 conv2d_9 (Conv2D, CONV_2D) [b:1,h:5,w:13,c:16] 272/1,088 16,656 conv2d_8 | Conv2D_[5]
------ ------------------------------------------ ---------------------- ------------- -------- ------------------------ --- ---------------- ------------------- ------------------------------------
10 eltwise_10 (Eltwise, ADD) [b:1,h:5,w:13,c:16] 1,040 pool_5 | +1,040(+100.0%) Eltwise/add_/Nonlinearity_[6, 7]
conv2d_9 |
nl_10_nl (Nonlinearity, ADD) [b:1,h:5,w:13,c:16] 1,040 eltwise_10 | -1,040(-100.0%)
------ ------------------------------------------ ---------------------- ------------- -------- ------------------------ --- ---------------- ------------------- ------------------------------------
11 conv2d_11 (Conv2D, DEPTHWISE_CONV_2D) [b:1,h:3,w:7,c:16] 160/640 3,040 nl_10_nl | Conv2D_[9]
------ ------------------------------------------ ---------------------- ------------- -------- ------------------------ --- ---------------- ------------------- ------------------------------------
12 conv2d_12 (Conv2D, CONV_2D) [b:1,h:3,w:7,c:32] 544/2,176 10,784 conv2d_11 | +672(+6.2%) Conv2D_/Nonlinearity_[10, 11]
nl_12_nl (Nonlinearity, CONV_2D) [b:1,h:3,w:7,c:32] 672 conv2d_12 | -672(-100.0%)
------ ------------------------------------------ ---------------------- ------------- -------- ------------------------ --- ---------------- ------------------- ------------------------------------
13 conv2d_13 (Conv2D, DEPTHWISE_CONV_2D) [b:1,h:3,w:7,c:32] 320/1,280 6,080 nl_12_nl | Conv2D_[12]
------ ------------------------------------------ ---------------------- ------------- -------- ------------------------ --- ---------------- ------------------- ------------------------------------
14 conv2d_14 (Conv2D, CONV_2D) [b:1,h:3,w:7,c:32] 1,056/4,224 21,536 conv2d_13 | Conv2D_[13]
------ ------------------------------------------ ---------------------- ------------- -------- ------------------------ --- ---------------- ------------------- ------------------------------------
15 conv2d_15 (Conv2D, CONV_2D) [b:1,h:3,w:7,c:32] 544/2,176 10,784 nl_10_nl | Conv2D_[8]
------ ------------------------------------------ ---------------------- ------------- -------- ------------------------ --- ---------------- ------------------- ------------------------------------
16 eltwise_16 (Eltwise, ADD) [b:1,h:3,w:7,c:32] 672 conv2d_15 | +672(+100.0%) Eltwise/add_/Nonlinearity_[14, 15]
conv2d_14 |
nl_16_nl (Nonlinearity, ADD) [b:1,h:3,w:7,c:32] 672 eltwise_16 | -672(-100.0%)
------ ------------------------------------------ ---------------------- ------------- -------- ------------------------ --- ---------------- ------------------- ------------------------------------
17 pool_17 (Pool, MEAN) [b:1,h:1,w:1,c:32] 672 nl_16_nl | Pool_[16]
reshape_17_reshape (Reshape, MEAN) [b:1,c:32] pool_17 |
------ ------------------------------------------ ---------------------- ------------- -------- ------------------------ --- ---------------- ------------------- ------------------------------------
18 arith_constant19 (Placeholder, ) [b:16,c:32] 512/2,048 | -1,664(-81.2%) +544(+100.0%) Dense_/Nonlinearity_[17, 18]
arith_constant21 (Placeholder, ) [b:16] 16/64 | -64(-100.0%)
gemm_18 (Gemm, FULLY_CONNECTED) [b:1,c:16] 528 reshape_17_reshape | -528(-100.0%)
arith_constant19 |
arith_constant21 |
nl_18_nl (Nonlinearity, FULLY_CONNECTED) [b:1,c:16] 16 gemm_18 | -16(-100.0%)
------ ------------------------------------------ ---------------------- ------------- -------- ------------------------ --- ---------------- ------------------- ------------------------------------
19 arith_constant18 (Placeholder, ) [b:2,c:16] 32/128 | -40(-31.2%) +34(+100.0%) Dense_[19]
arith_constant20 (Placeholder, ) [b:2] 2/8 | -8(-100.0%)
gemm_19 (Gemm, FULLY_CONNECTED) [b:1,c:2] 34 nl_18_nl | -34(-100.0%)
arith_constant18 |
arith_constant20 |
------ ------------------------------------------ ---------------------- ------------- -------- ------------------------ --- ---------------- ------------------- ------------------------------------
20 nl_20 (Nonlinearity, SOFTMAX) [b:1,c:2] 30 gemm_19 | Nonlinearity_[o][20]
------ ------------------------------------------ ---------------------- ------------- -------- ------------------------ --- ---------------- ------------------- ------------------------------------
model/c-model: macc=156,480/156,480 weights=16,840/14,936 -1,904(-11.3%) activations=--/11,904 io=--/0
Generated C-graph summary
------------------------------------------------------------------------------------------------------------------------
model name : model
model name : model2
c-name : model
c-node # : 35
c-array # : 81
activations size : 37120 (1 segment)
weights size : 29372 (1 segment)
macc : 957040
c-node # : 21
c-array # : 51
activations size : 11904 (1 segment)
weights size : 14936 (1 segment)
macc : 156480
inputs : ['serving_default_input0_output']
outputs : ['nl_30_output']
outputs : ['nl_20_output']
C-Arrays (81)
------ ------------------------------- ------------ ------------------------- ------------------ ---------
c_id name (*_array) item/size domain/mem-pool c-type comment
------ ------------------------------- ------------ ------------------------- ------------------ ---------
0 conv2d_11_output 4096/16384 activations/**default** float
1 conv2d_11_weights 144/576 weights/weights const float
2 conv2d_12_bias 16/64 weights/weights const float
3 conv2d_12_output 4096/16384 activations/**default** float
4 conv2d_12_scratch0 16/64 activations/**default** float
5 conv2d_12_weights 256/1024 weights/weights const float
6 conv2d_13_output 4096/16384 activations/**default** float
7 conv2d_13_weights 144/576 weights/weights const float
8 conv2d_14_bias 16/64 weights/weights const float
9 conv2d_14_output 4096/16384 activations/**default** float
10 conv2d_14_scratch0 16/64 activations/**default** float
11 conv2d_14_weights 256/1024 weights/weights const float
12 conv2d_16_output 1024/4096 activations/**default** float
13 conv2d_16_weights 144/576 weights/weights const float
14 conv2d_17_bias 32/128 weights/weights const float
15 conv2d_17_output 2048/8192 activations/**default** float
16 conv2d_17_scratch0 16/64 activations/**default** float
17 conv2d_17_weights 512/2048 weights/weights const float
18 conv2d_18_bias 32/128 weights/weights const float
19 conv2d_18_output 2048/8192 activations/**default** float
20 conv2d_18_weights 288/1152 weights/weights const float
21 conv2d_19_bias 32/128 weights/weights const float
22 conv2d_19_output 2048/8192 activations/**default** float
23 conv2d_19_scratch0 32/128 activations/**default** float
24 conv2d_19_weights 1024/4096 weights/weights const float
25 conv2d_20_bias 32/128 weights/weights const float
26 conv2d_20_output 2048/8192 activations/**default** float
27 conv2d_20_scratch0 16/64 activations/**default** float
28 conv2d_20_weights 512/2048 weights/weights const float
29 conv2d_22_output 2048/8192 activations/**default** float
30 conv2d_22_weights 288/1152 weights/weights const float
31 conv2d_23_bias 32/128 weights/weights const float
32 conv2d_23_output 2048/8192 activations/**default** float
33 conv2d_23_scratch0 32/128 activations/**default** float
34 conv2d_23_weights 1024/4096 weights/weights const float
35 conv2d_24_output 2048/8192 activations/**default** float
36 conv2d_24_weights 288/1152 weights/weights const float
37 conv2d_25_bias 32/128 weights/weights const float
38 conv2d_25_output 2048/8192 activations/**default** float
39 conv2d_25_scratch0 32/128 activations/**default** float
40 conv2d_25_weights 1024/4096 weights/weights const float
41 conv2d_4_bias 16/64 weights/weights const float
42 conv2d_4_output 4096/16384 activations/**default** float
43 conv2d_4_scratch0 9/36 activations/**default** float
44 conv2d_4_scratch1 1024/4096 activations/**default** float
45 conv2d_4_weights 144/576 weights/weights const float
46 conv2d_6_bias 16/64 weights/weights const float
47 conv2d_6_output 4096/16384 activations/**default** float
48 conv2d_6_weights 144/576 weights/weights const float
49 conv2d_7_bias 16/64 weights/weights const float
50 conv2d_7_output 4096/16384 activations/**default** float
51 conv2d_7_scratch0 16/64 activations/**default** float
52 conv2d_7_weights 256/1024 weights/weights const float
53 conv2d_8_output 4096/16384 activations/**default** float
54 conv2d_8_weights 144/576 weights/weights const float
55 conv2d_9_bias 16/64 weights/weights const float
56 conv2d_9_output 4096/16384 activations/**default** float
57 conv2d_9_scratch0 16/64 activations/**default** float
58 conv2d_9_weights 256/1024 weights/weights const float
59 eltwise_10_output 4096/16384 activations/**default** float
60 eltwise_15_output 4096/16384 activations/**default** float
61 eltwise_21_output 2048/8192 activations/**default** float
62 eltwise_26_output 2048/8192 activations/**default** float
63 gemm_28_bias 32/128 weights/weights const float
64 gemm_28_output 32/128 activations/**default** float
65 gemm_28_weights 1024/576 weights/weights const lut4_float
66 gemm_29_bias 3/12 weights/weights const float
67 gemm_29_output 3/12 activations/**default** float
68 gemm_29_weights 96/112 weights/weights const lut4_float
69 nl_10_nl_output 4096/16384 activations/**default** float
70 nl_12_nl_output 4096/16384 activations/**default** float
71 nl_15_nl_output 4096/16384 activations/**default** float
72 nl_17_nl_output 2048/8192 activations/**default** float
73 nl_21_nl_output 2048/8192 activations/**default** float
74 nl_23_nl_output 2048/8192 activations/**default** float
75 nl_26_nl_output 2048/8192 activations/**default** float
76 nl_28_nl_output 32/128 activations/**default** float
77 nl_30_output 3/12 activations/**default** float /output
78 nl_7_nl_output 4096/16384 activations/**default** float
79 pool_27_output 32/128 activations/**default** float
80 serving_default_input0_output 1024/4096 activations/**default** float /input
------ ------------------------------- ------------ ------------------------- ------------------ ---------
C-Arrays (51)
------ ------------------------------- ----------- ------------------------- ------------------ ---------
c_id name (*_array) item/size domain/mem-pool c-type comment
------ ------------------------------- ----------- ------------------------- ------------------ ---------
0 conv2d_11_output 336/1344 activations/**default** float
1 conv2d_11_weights 144/576 weights/weights const float
2 conv2d_12_bias 32/128 weights/weights const float
3 conv2d_12_output 672/2688 activations/**default** float
4 conv2d_12_scratch0 16/64 activations/**default** float
5 conv2d_12_weights 512/2048 weights/weights const float
6 conv2d_13_bias 32/128 weights/weights const float
7 conv2d_13_output 672/2688 activations/**default** float
8 conv2d_13_weights 288/1152 weights/weights const float
9 conv2d_14_bias 32/128 weights/weights const float
10 conv2d_14_output 672/2688 activations/**default** float
11 conv2d_14_scratch0 32/128 activations/**default** float
12 conv2d_14_weights 1024/4096 weights/weights const float
13 conv2d_15_bias 32/128 weights/weights const float
14 conv2d_15_output 672/2688 activations/**default** float
15 conv2d_15_scratch0 16/64 activations/**default** float
16 conv2d_15_weights 512/2048 weights/weights const float
17 conv2d_4_bias 16/64 weights/weights const float
18 conv2d_4_output 1040/4160 activations/**default** float
19 conv2d_4_scratch0 9/36 activations/**default** float
20 conv2d_4_scratch1 832/3328 activations/**default** float
21 conv2d_4_weights 144/576 weights/weights const float
22 conv2d_6_bias 16/64 weights/weights const float
23 conv2d_6_output 1040/4160 activations/**default** float
24 conv2d_6_weights 144/576 weights/weights const float
25 conv2d_7_bias 16/64 weights/weights const float
26 conv2d_7_output 1040/4160 activations/**default** float
27 conv2d_7_scratch0 16/64 activations/**default** float
28 conv2d_7_weights 256/1024 weights/weights const float
29 conv2d_8_output 1040/4160 activations/**default** float
30 conv2d_8_weights 144/576 weights/weights const float
31 conv2d_9_bias 16/64 weights/weights const float
32 conv2d_9_output 1040/4160 activations/**default** float
33 conv2d_9_scratch0 16/64 activations/**default** float
34 conv2d_9_weights 256/1024 weights/weights const float
35 eltwise_10_output 1040/4160 activations/**default** float
36 eltwise_16_output 672/2688 activations/**default** float
37 gemm_18_bias 16/64 weights/weights const float
38 gemm_18_output 16/64 activations/**default** float
39 gemm_18_weights 512/320 weights/weights const lut4_float
40 gemm_19_bias 2/8 weights/weights const float
41 gemm_19_output 2/8 activations/**default** float
42 gemm_19_weights 32/80 weights/weights const lut4_float
43 nl_10_nl_output 1040/4160 activations/**default** float
44 nl_12_nl_output 672/2688 activations/**default** float
45 nl_16_nl_output 672/2688 activations/**default** float
46 nl_18_nl_output 16/64 activations/**default** float
47 nl_20_output 2/8 activations/**default** float /output
48 nl_7_nl_output 1040/4160 activations/**default** float
49 pool_17_output 32/128 activations/**default** float
50 serving_default_input0_output 260/1040 activations/**default** float /input
------ ------------------------------- ----------- ------------------------- ------------------ ---------
C-Layers (35)
------ ---------------- ---- --------------- -------- ------ ---------------------------------- ----------------------
c_id name (*_layer) id layer_type macc rom tensors shape (array id)
------ ---------------- ---- --------------- -------- ------ ---------------------------------- ----------------------
0 conv2d_4 5 Conv2D 180240 640 I: serving_default_input0_output f32(1x1024) (80)
S: conv2d_4_scratch0
S: conv2d_4_scratch1
W: conv2d_4_weights f32(16x3x3x1) (45)
W: conv2d_4_bias f32(16) (41)
O: conv2d_4_output f32(1x16x16x16) (42)
------ ---------------- ---- --------------- -------- ------ ---------------------------------- ----------------------
1 conv2d_6 6 Conv2D 36880 640 I: conv2d_4_output f32(1x16x16x16) (42)
W: conv2d_6_weights f32(16x3x3x1) (48)
W: conv2d_6_bias f32(16) (46)
O: conv2d_6_output f32(1x16x16x16) (47)
------ ---------------- ---- --------------- -------- ------ ---------------------------------- ----------------------
2 conv2d_7 7 Conv2D 65552 1088 I: conv2d_6_output f32(1x16x16x16) (47)
S: conv2d_7_scratch0
W: conv2d_7_weights f32(16x1x1x16) (52)
W: conv2d_7_bias f32(16) (49)
O: conv2d_7_output f32(1x16x16x16) (50)
------ ---------------- ---- --------------- -------- ------ ---------------------------------- ----------------------
3 nl_7_nl 7 Nonlinearity 4096 0 I: conv2d_7_output f32(1x16x16x16) (50)
O: nl_7_nl_output f32(1x16x16x16) (78)
------ ---------------- ---- --------------- -------- ------ ---------------------------------- ----------------------
4 conv2d_8 8 Conv2D 36880 640 I: nl_7_nl_output f32(1x16x16x16) (78)
W: conv2d_8_weights f32(16x3x3x1) (54)
W: conv2d_6_bias f32(16) (46)
O: conv2d_8_output f32(1x16x16x16) (53)
------ ---------------- ---- --------------- -------- ------ ---------------------------------- ----------------------
5 conv2d_9 9 Conv2D 65552 1088 I: conv2d_8_output f32(1x16x16x16) (53)
S: conv2d_9_scratch0
W: conv2d_9_weights f32(16x1x1x16) (58)
W: conv2d_9_bias f32(16) (55)
O: conv2d_9_output f32(1x16x16x16) (56)
------ ---------------- ---- --------------- -------- ------ ---------------------------------- ----------------------
6 eltwise_10 10 Eltwise/add 4096 0 I: conv2d_4_output f32(1x16x16x16) (42)
I: conv2d_9_output f32(1x16x16x16) (42)
O: eltwise_10_output f32(1x16x16x16) (59)
------ ---------------- ---- --------------- -------- ------ ---------------------------------- ----------------------
7 nl_10_nl 10 Nonlinearity 4096 0 I: eltwise_10_output f32(1x16x16x16) (59)
O: nl_10_nl_output f32(1x16x16x16) (69)
------ ---------------- ---- --------------- -------- ------ ---------------------------------- ----------------------
8 conv2d_11 11 Conv2D 36880 640 I: nl_10_nl_output f32(1x16x16x16) (69)
W: conv2d_11_weights f32(16x3x3x1) (1)
W: conv2d_6_bias f32(16) (46)
O: conv2d_11_output f32(1x16x16x16) (0)
------ ---------------- ---- --------------- -------- ------ ---------------------------------- ----------------------
9 conv2d_12 12 Conv2D 65552 1088 I: conv2d_11_output f32(1x16x16x16) (0)
S: conv2d_12_scratch0
W: conv2d_12_weights f32(16x1x1x16) (5)
W: conv2d_12_bias f32(16) (2)
O: conv2d_12_output f32(1x16x16x16) (3)
------ ---------------- ---- --------------- -------- ------ ---------------------------------- ----------------------
10 nl_12_nl 12 Nonlinearity 4096 0 I: conv2d_12_output f32(1x16x16x16) (3)
O: nl_12_nl_output f32(1x16x16x16) (70)
------ ---------------- ---- --------------- -------- ------ ---------------------------------- ----------------------
11 conv2d_13 13 Conv2D 36880 640 I: nl_12_nl_output f32(1x16x16x16) (70)
W: conv2d_13_weights f32(16x3x3x1) (7)
W: conv2d_6_bias f32(16) (46)
O: conv2d_13_output f32(1x16x16x16) (6)
------ ---------------- ---- --------------- -------- ------ ---------------------------------- ----------------------
12 conv2d_14 14 Conv2D 65552 1088 I: conv2d_13_output f32(1x16x16x16) (6)
S: conv2d_14_scratch0
W: conv2d_14_weights f32(16x1x1x16) (11)
W: conv2d_14_bias f32(16) (8)
O: conv2d_14_output f32(1x16x16x16) (9)
------ ---------------- ---- --------------- -------- ------ ---------------------------------- ----------------------
13 eltwise_15 15 Eltwise/add 4096 0 I: nl_10_nl_output f32(1x16x16x16) (69)
I: conv2d_14_output f32(1x16x16x16) (69)
O: eltwise_15_output f32(1x16x16x16) (60)
------ ---------------- ---- --------------- -------- ------ ---------------------------------- ----------------------
14 nl_15_nl 15 Nonlinearity 4096 0 I: eltwise_15_output f32(1x16x16x16) (60)
O: nl_15_nl_output f32(1x16x16x16) (71)
------ ---------------- ---- --------------- -------- ------ ---------------------------------- ----------------------
15 conv2d_20 20 Conv2D 32800 2176 I: nl_15_nl_output f32(1x16x16x16) (71)
S: conv2d_20_scratch0
W: conv2d_20_weights f32(32x1x1x16) (28)
W: conv2d_20_bias f32(32) (25)
O: conv2d_20_output f32(1x8x8x32) (26)
------ ---------------- ---- --------------- -------- ------ ---------------------------------- ----------------------
16 conv2d_16 16 Conv2D 9232 640 I: nl_15_nl_output f32(1x16x16x16) (71)
W: conv2d_16_weights f32(16x3x3x1) (13)
W: conv2d_6_bias f32(16) (46)
O: conv2d_16_output f32(1x8x8x16) (12)
------ ---------------- ---- --------------- -------- ------ ---------------------------------- ----------------------
17 conv2d_17 17 Conv2D 32800 2176 I: conv2d_16_output f32(1x8x8x16) (12)
S: conv2d_17_scratch0
W: conv2d_17_weights f32(32x1x1x16) (17)
W: conv2d_17_bias f32(32) (14)
O: conv2d_17_output f32(1x8x8x32) (15)
------ ---------------- ---- --------------- -------- ------ ---------------------------------- ----------------------
18 nl_17_nl 17 Nonlinearity 2048 0 I: conv2d_17_output f32(1x8x8x32) (15)
O: nl_17_nl_output f32(1x8x8x32) (72)
------ ---------------- ---- --------------- -------- ------ ---------------------------------- ----------------------
19 conv2d_18 18 Conv2D 18464 1280 I: nl_17_nl_output f32(1x8x8x32) (72)
W: conv2d_18_weights f32(32x3x3x1) (20)
W: conv2d_18_bias f32(32) (18)
O: conv2d_18_output f32(1x8x8x32) (19)
------ ---------------- ---- --------------- -------- ------ ---------------------------------- ----------------------
20 conv2d_19 19 Conv2D 65568 4224 I: conv2d_18_output f32(1x8x8x32) (19)
S: conv2d_19_scratch0
W: conv2d_19_weights f32(32x1x1x32) (24)
W: conv2d_19_bias f32(32) (21)
O: conv2d_19_output f32(1x8x8x32) (22)
------ ---------------- ---- --------------- -------- ------ ---------------------------------- ----------------------
21 eltwise_21 21 Eltwise/add 2048 0 I: conv2d_20_output f32(1x8x8x32) (26)
I: conv2d_19_output f32(1x8x8x32) (26)
O: eltwise_21_output f32(1x8x8x32) (61)
------ ---------------- ---- --------------- -------- ------ ---------------------------------- ----------------------
22 nl_21_nl 21 Nonlinearity 2048 0 I: eltwise_21_output f32(1x8x8x32) (61)
O: nl_21_nl_output f32(1x8x8x32) (73)
------ ---------------- ---- --------------- -------- ------ ---------------------------------- ----------------------
23 conv2d_22 22 Conv2D 18464 1280 I: nl_21_nl_output f32(1x8x8x32) (73)
W: conv2d_22_weights f32(32x3x3x1) (30)
W: conv2d_18_bias f32(32) (18)
O: conv2d_22_output f32(1x8x8x32) (29)
------ ---------------- ---- --------------- -------- ------ ---------------------------------- ----------------------
24 conv2d_23 23 Conv2D 65568 4224 I: conv2d_22_output f32(1x8x8x32) (29)
S: conv2d_23_scratch0
W: conv2d_23_weights f32(32x1x1x32) (34)
W: conv2d_23_bias f32(32) (31)
O: conv2d_23_output f32(1x8x8x32) (32)
------ ---------------- ---- --------------- -------- ------ ---------------------------------- ----------------------
25 nl_23_nl 23 Nonlinearity 2048 0 I: conv2d_23_output f32(1x8x8x32) (32)
O: nl_23_nl_output f32(1x8x8x32) (74)
------ ---------------- ---- --------------- -------- ------ ---------------------------------- ----------------------
26 conv2d_24 24 Conv2D 18464 1280 I: nl_23_nl_output f32(1x8x8x32) (74)
W: conv2d_24_weights f32(32x3x3x1) (36)
W: conv2d_18_bias f32(32) (18)
O: conv2d_24_output f32(1x8x8x32) (35)
------ ---------------- ---- --------------- -------- ------ ---------------------------------- ----------------------
27 conv2d_25 25 Conv2D 65568 4224 I: conv2d_24_output f32(1x8x8x32) (35)
S: conv2d_25_scratch0
W: conv2d_25_weights f32(32x1x1x32) (40)
W: conv2d_25_bias f32(32) (37)
O: conv2d_25_output f32(1x8x8x32) (38)
------ ---------------- ---- --------------- -------- ------ ---------------------------------- ----------------------
28 eltwise_26 26 Eltwise/add 2048 0 I: nl_21_nl_output f32(1x8x8x32) (73)
I: conv2d_25_output f32(1x8x8x32) (73)
O: eltwise_26_output f32(1x8x8x32) (62)
------ ---------------- ---- --------------- -------- ------ ---------------------------------- ----------------------
29 nl_26_nl 26 Nonlinearity 2048 0 I: eltwise_26_output f32(1x8x8x32) (62)
O: nl_26_nl_output f32(1x8x8x32) (75)
------ ---------------- ---- --------------- -------- ------ ---------------------------------- ----------------------
30 pool_27 27 Pool 2048 0 I: nl_26_nl_output f32(1x8x8x32) (75)
O: pool_27_output f32(1x1x1x32) (79)
------ ---------------- ---- --------------- -------- ------ ---------------------------------- ----------------------
31 gemm_28 28 Dense 1056 704 I: pool_27_output f32(1x1x1x32) (79)
W: gemm_28_weights c4(32x32) (65)
W: gemm_28_bias f32(32) (63)
O: gemm_28_output f32(1x32) (64)
------ ---------------- ---- --------------- -------- ------ ---------------------------------- ----------------------
32 nl_28_nl 28 Nonlinearity 32 0 I: gemm_28_output f32(1x32) (64)
O: nl_28_nl_output f32(1x32) (76)
------ ---------------- ---- --------------- -------- ------ ---------------------------------- ----------------------
33 gemm_29 29 Dense 99 124 I: nl_28_nl_output f32(1x32) (76)
W: gemm_29_weights c4(3x32) (68)
W: gemm_29_bias f32(3) (66)
O: gemm_29_output f32(1x3) (67)
------ ---------------- ---- --------------- -------- ------ ---------------------------------- ----------------------
34 nl_30 30 Nonlinearity 45 0 I: gemm_29_output f32(1x3) (67)
O: nl_30_output f32(1x3) (77)
------ ---------------- ---- --------------- -------- ------ ---------------------------------- ----------------------
C-Layers (21)
------ ---------------- ---- --------------- ------- ------ ---------------------------------- ---------------------
c_id name (*_layer) id layer_type macc rom tensors shape (array id)
------ ---------------- ---- --------------- ------- ------ ---------------------------------- ---------------------
0 conv2d_4 5 Conv2D 45776 640 I: serving_default_input0_output f32(1x260) (50)
S: conv2d_4_scratch0
S: conv2d_4_scratch1
W: conv2d_4_weights f32(16x3x3x1) (21)
W: conv2d_4_bias f32(16) (17)
O: conv2d_4_output f32(1x5x13x16) (18)
------ ---------------- ---- --------------- ------- ------ ---------------------------------- ---------------------
1 conv2d_6 6 Conv2D 9376 640 I: conv2d_4_output f32(1x5x13x16) (18)
W: conv2d_6_weights f32(16x3x3x1) (24)
W: conv2d_6_bias f32(16) (22)
O: conv2d_6_output f32(1x5x13x16) (23)
------ ---------------- ---- --------------- ------- ------ ---------------------------------- ---------------------
2 conv2d_7 7 Conv2D 16656 1088 I: conv2d_6_output f32(1x5x13x16) (23)
S: conv2d_7_scratch0
W: conv2d_7_weights f32(16x1x1x16) (28)
W: conv2d_7_bias f32(16) (25)
O: conv2d_7_output f32(1x5x13x16) (26)
------ ---------------- ---- --------------- ------- ------ ---------------------------------- ---------------------
3 nl_7_nl 7 Nonlinearity 1040 0 I: conv2d_7_output f32(1x5x13x16) (26)
O: nl_7_nl_output f32(1x5x13x16) (48)
------ ---------------- ---- --------------- ------- ------ ---------------------------------- ---------------------
4 conv2d_8 8 Conv2D 9376 640 I: nl_7_nl_output f32(1x5x13x16) (48)
W: conv2d_8_weights f32(16x3x3x1) (30)
W: conv2d_6_bias f32(16) (22)
O: conv2d_8_output f32(1x5x13x16) (29)
------ ---------------- ---- --------------- ------- ------ ---------------------------------- ---------------------
5 conv2d_9 9 Conv2D 16656 1088 I: conv2d_8_output f32(1x5x13x16) (29)
S: conv2d_9_scratch0
W: conv2d_9_weights f32(16x1x1x16) (34)
W: conv2d_9_bias f32(16) (31)
O: conv2d_9_output f32(1x5x13x16) (32)
------ ---------------- ---- --------------- ------- ------ ---------------------------------- ---------------------
6 eltwise_10 10 Eltwise/add 1040 0 I: conv2d_4_output f32(1x5x13x16) (18)
I: conv2d_9_output f32(1x5x13x16) (18)
O: eltwise_10_output f32(1x5x13x16) (35)
------ ---------------- ---- --------------- ------- ------ ---------------------------------- ---------------------
7 nl_10_nl 10 Nonlinearity 1040 0 I: eltwise_10_output f32(1x5x13x16) (35)
O: nl_10_nl_output f32(1x5x13x16) (43)
------ ---------------- ---- --------------- ------- ------ ---------------------------------- ---------------------
8 conv2d_15 15 Conv2D 10784 2176 I: nl_10_nl_output f32(1x5x13x16) (43)
S: conv2d_15_scratch0
W: conv2d_15_weights f32(32x1x1x16) (16)
W: conv2d_15_bias f32(32) (13)
O: conv2d_15_output f32(1x3x7x32) (14)
------ ---------------- ---- --------------- ------- ------ ---------------------------------- ---------------------
9 conv2d_11 11 Conv2D 3040 640 I: nl_10_nl_output f32(1x5x13x16) (43)
W: conv2d_11_weights f32(16x3x3x1) (1)
W: conv2d_6_bias f32(16) (22)
O: conv2d_11_output f32(1x3x7x16) (0)
------ ---------------- ---- --------------- ------- ------ ---------------------------------- ---------------------
10 conv2d_12 12 Conv2D 10784 2176 I: conv2d_11_output f32(1x3x7x16) (0)
S: conv2d_12_scratch0
W: conv2d_12_weights f32(32x1x1x16) (5)
W: conv2d_12_bias f32(32) (2)
O: conv2d_12_output f32(1x3x7x32) (3)
------ ---------------- ---- --------------- ------- ------ ---------------------------------- ---------------------
11 nl_12_nl 12 Nonlinearity 672 0 I: conv2d_12_output f32(1x3x7x32) (3)
O: nl_12_nl_output f32(1x3x7x32) (44)
------ ---------------- ---- --------------- ------- ------ ---------------------------------- ---------------------
12 conv2d_13 13 Conv2D 6080 1280 I: nl_12_nl_output f32(1x3x7x32) (44)
W: conv2d_13_weights f32(32x3x3x1) (8)
W: conv2d_13_bias f32(32) (6)
O: conv2d_13_output f32(1x3x7x32) (7)
------ ---------------- ---- --------------- ------- ------ ---------------------------------- ---------------------
13 conv2d_14 14 Conv2D 21536 4224 I: conv2d_13_output f32(1x3x7x32) (7)
S: conv2d_14_scratch0
W: conv2d_14_weights f32(32x1x1x32) (12)
W: conv2d_14_bias f32(32) (9)
O: conv2d_14_output f32(1x3x7x32) (10)
------ ---------------- ---- --------------- ------- ------ ---------------------------------- ---------------------
14 eltwise_16 16 Eltwise/add 672 0 I: conv2d_15_output f32(1x3x7x32) (14)
I: conv2d_14_output f32(1x3x7x32) (14)
O: eltwise_16_output f32(1x3x7x32) (36)
------ ---------------- ---- --------------- ------- ------ ---------------------------------- ---------------------
15 nl_16_nl 16 Nonlinearity 672 0 I: eltwise_16_output f32(1x3x7x32) (36)
O: nl_16_nl_output f32(1x3x7x32) (45)
------ ---------------- ---- --------------- ------- ------ ---------------------------------- ---------------------
16 pool_17 17 Pool 672 0 I: nl_16_nl_output f32(1x3x7x32) (45)
O: pool_17_output f32(1x1x1x32) (49)
------ ---------------- ---- --------------- ------- ------ ---------------------------------- ---------------------
17 gemm_18 18 Dense 528 384 I: pool_17_output f32(1x1x1x32) (49)
W: gemm_18_weights c4(16x32) (39)
W: gemm_18_bias f32(16) (37)
O: gemm_18_output f32(1x16) (38)
------ ---------------- ---- --------------- ------- ------ ---------------------------------- ---------------------
18 nl_18_nl 18 Nonlinearity 16 0 I: gemm_18_output f32(1x16) (38)
O: nl_18_nl_output f32(1x16) (46)
------ ---------------- ---- --------------- ------- ------ ---------------------------------- ---------------------
19 gemm_19 19 Dense 34 88 I: nl_18_nl_output f32(1x16) (46)
W: gemm_19_weights c4(2x16) (42)
W: gemm_19_bias f32(2) (40)
O: gemm_19_output f32(1x2) (41)
------ ---------------- ---- --------------- ------- ------ ---------------------------------- ---------------------
20 nl_20 20 Nonlinearity 30 0 I: gemm_19_output f32(1x2) (41)
O: nl_20_output f32(1x2) (47)
------ ---------------- ---- --------------- ------- ------ ---------------------------------- ---------------------
@ -386,102 +266,78 @@ Number of operations per c-layer
------- ------ -------------------------- --------- --------------
c_id m_id name (type) #op type
------- ------ -------------------------- --------- --------------
0 5 conv2d_4 (Conv2D) 180,240 smul_f32_f32
1 6 conv2d_6 (Conv2D) 36,880 smul_f32_f32
2 7 conv2d_7 (Conv2D) 65,552 smul_f32_f32
3 7 nl_7_nl (Nonlinearity) 4,096 op_f32_f32
4 8 conv2d_8 (Conv2D) 36,880 smul_f32_f32
5 9 conv2d_9 (Conv2D) 65,552 smul_f32_f32
6 10 eltwise_10 (Eltwise/add) 4,096 op_f32_f32
7 10 nl_10_nl (Nonlinearity) 4,096 op_f32_f32
8 11 conv2d_11 (Conv2D) 36,880 smul_f32_f32
9 12 conv2d_12 (Conv2D) 65,552 smul_f32_f32
10 12 nl_12_nl (Nonlinearity) 4,096 op_f32_f32
11 13 conv2d_13 (Conv2D) 36,880 smul_f32_f32
12 14 conv2d_14 (Conv2D) 65,552 smul_f32_f32
13 15 eltwise_15 (Eltwise/add) 4,096 op_f32_f32
14 15 nl_15_nl (Nonlinearity) 4,096 op_f32_f32
15 20 conv2d_20 (Conv2D) 32,800 smul_f32_f32
16 16 conv2d_16 (Conv2D) 9,232 smul_f32_f32
17 17 conv2d_17 (Conv2D) 32,800 smul_f32_f32
18 17 nl_17_nl (Nonlinearity) 2,048 op_f32_f32
19 18 conv2d_18 (Conv2D) 18,464 smul_f32_f32
20 19 conv2d_19 (Conv2D) 65,568 smul_f32_f32
21 21 eltwise_21 (Eltwise/add) 2,048 op_f32_f32
22 21 nl_21_nl (Nonlinearity) 2,048 op_f32_f32
23 22 conv2d_22 (Conv2D) 18,464 smul_f32_f32
24 23 conv2d_23 (Conv2D) 65,568 smul_f32_f32
25 23 nl_23_nl (Nonlinearity) 2,048 op_f32_f32
26 24 conv2d_24 (Conv2D) 18,464 smul_f32_f32
27 25 conv2d_25 (Conv2D) 65,568 smul_f32_f32
28 26 eltwise_26 (Eltwise/add) 2,048 op_f32_f32
29 26 nl_26_nl (Nonlinearity) 2,048 op_f32_f32
30 27 pool_27 (Pool) 2,048 smul_f32_f32
31 28 gemm_28 (Dense) 1,056 smul_f32_f4
32 28 nl_28_nl (Nonlinearity) 32 op_f32_f32
33 29 gemm_29 (Dense) 99 smul_f32_f4
34 30 nl_30 (Nonlinearity) 45 op_f32_f32
0 5 conv2d_4 (Conv2D) 45,776 smul_f32_f32
1 6 conv2d_6 (Conv2D) 9,376 smul_f32_f32
2 7 conv2d_7 (Conv2D) 16,656 smul_f32_f32
3 7 nl_7_nl (Nonlinearity) 1,040 op_f32_f32
4 8 conv2d_8 (Conv2D) 9,376 smul_f32_f32
5 9 conv2d_9 (Conv2D) 16,656 smul_f32_f32
6 10 eltwise_10 (Eltwise/add) 1,040 op_f32_f32
7 10 nl_10_nl (Nonlinearity) 1,040 op_f32_f32
8 15 conv2d_15 (Conv2D) 10,784 smul_f32_f32
9 11 conv2d_11 (Conv2D) 3,040 smul_f32_f32
10 12 conv2d_12 (Conv2D) 10,784 smul_f32_f32
11 12 nl_12_nl (Nonlinearity) 672 op_f32_f32
12 13 conv2d_13 (Conv2D) 6,080 smul_f32_f32
13 14 conv2d_14 (Conv2D) 21,536 smul_f32_f32
14 16 eltwise_16 (Eltwise/add) 672 op_f32_f32
15 16 nl_16_nl (Nonlinearity) 672 op_f32_f32
16 17 pool_17 (Pool) 672 smul_f32_f32
17 18 gemm_18 (Dense) 528 smul_f32_f4
18 18 nl_18_nl (Nonlinearity) 16 op_f32_f32
19 19 gemm_19 (Dense) 34 smul_f32_f4
20 20 nl_20 (Nonlinearity) 30 op_f32_f32
------- ------ -------------------------- --------- --------------
total 957,040
total 156,480
Number of operation types
---------------- --------- -----------
operation type # %
---------------- --------- -----------
smul_f32_f32 918,944 96.0%
op_f32_f32 36,941 3.9%
smul_f32_f4 1,155 0.1%
smul_f32_f32 150,736 96.3%
op_f32_f32 5,182 3.3%
smul_f32_f4 562 0.4%
Complexity report (model)
------ ------------------ ------------------------- ------------------------- ----------
m_id name c_macc c_rom c_id
------ ------------------ ------------------------- ------------------------- ----------
5 pool_5 |||||||||||||||| 18.8% ||| 2.2% [0]
6 conv2d_6 |||| 3.9% ||| 2.2% [1]
7 conv2d_7 |||||| 7.3% |||| 3.7% [2, 3]
8 conv2d_8 |||| 3.9% ||| 2.2% [4]
9 conv2d_9 |||||| 6.8% |||| 3.7% [5]
10 eltwise_10 | 0.9% | 0.0% [6, 7]
11 conv2d_11 |||| 3.9% ||| 2.2% [8]
12 conv2d_12 |||||| 7.3% |||| 3.7% [9, 10]
13 conv2d_13 |||| 3.9% ||| 2.2% [11]
14 conv2d_14 |||||| 6.8% |||| 3.7% [12]
15 eltwise_15 | 0.9% | 0.0% [13, 14]
16 conv2d_16 | 1.0% ||| 2.2% [16]
17 conv2d_17 ||| 3.6% |||||||| 7.4% [17, 18]
18 conv2d_18 || 1.9% ||||| 4.4% [19]
19 conv2d_19 |||||| 6.9% |||||||||||||||| 14.4% [20]
20 conv2d_20 ||| 3.4% |||||||| 7.4% [15]
21 eltwise_21 | 0.4% | 0.0% [21, 22]
22 conv2d_22 || 1.9% ||||| 4.4% [23]
23 conv2d_23 |||||| 7.1% |||||||||||||||| 14.4% [24, 25]
24 conv2d_24 || 1.9% ||||| 4.4% [26]
25 conv2d_25 |||||| 6.9% |||||||||||||||| 14.4% [27]
26 eltwise_26 | 0.4% | 0.0% [28, 29]
27 pool_27 | 0.2% | 0.0% [30]
28 arith_constant31 | 0.1% ||| 2.4% [31, 32]
29 arith_constant30 | 0.0% | 0.4% [33]
30 nl_30 | 0.0% | 0.0% [34]
5 pool_5 |||||||||||||||| 29.3% ||| 4.3% [0]
6 conv2d_6 |||| 6.0% ||| 4.3% [1]
7 conv2d_7 |||||| 11.3% |||| 7.3% [2, 3]
8 conv2d_8 |||| 6.0% ||| 4.3% [4]
9 conv2d_9 |||||| 10.6% |||| 7.3% [5]
10 eltwise_10 | 1.3% | 0.0% [6, 7]
11 conv2d_11 | 1.9% ||| 4.3% [9]
12 conv2d_12 |||| 7.3% |||||||| 14.6% [10, 11]
13 conv2d_13 || 3.9% ||||| 8.6% [12]
14 conv2d_14 |||||||| 13.8% |||||||||||||||| 28.3% [13]
15 conv2d_15 |||| 6.9% |||||||| 14.6% [8]
16 eltwise_16 | 0.9% | 0.0% [14, 15]
17 pool_17 | 0.4% | 0.0% [16]
18 arith_constant19 | 0.3% || 2.6% [17, 18]
19 arith_constant18 | 0.0% | 0.6% [19]
20 nl_20 | 0.0% | 0.0% [20]
------ ------------------ ------------------------- ------------------------- ----------
macc=957,040 weights=29,372 act=37,120 ram_io=0
macc=156,480 weights=14,936 act=11,904 ram_io=0
Requested memory size by section - "stm32f4" target
------------------------------ -------- -------- -------- --------
module text rodata data bss
------------------------------ -------- -------- -------- --------
NetworkRuntime1000_CM4_GCC.a 16,116 0 0 0
model.o 1,684 280 10,716 432
model_data.o 48 16 88 0
lib (toolchain)* 614 24 0 0
------------------------------ -------- -------- -------- --------
RT total** 18,462 320 10,804 432
------------------------------ -------- -------- -------- --------
weights 0 29,376 0 0
activations 0 0 0 37,120
io 0 0 0 0
------------------------------ -------- -------- -------- --------
TOTAL 18,462 29,696 10,804 37,552
------------------------------ -------- -------- -------- --------
------------------------------ -------- -------- ------- --------
module text rodata data bss
------------------------------ -------- -------- ------- --------
NetworkRuntime1000_CM4_GCC.a 16,116 0 0 0
model.o 1,176 168 6,708 304
model_data.o 48 16 88 0
lib (toolchain)* 614 24 0 0
------------------------------ -------- -------- ------- --------
RT total** 17,954 208 6,796 304
------------------------------ -------- -------- ------- --------
weights 0 14,936 0 0
activations 0 0 0 11,904
io 0 0 0 0
------------------------------ -------- -------- ------- --------
TOTAL 17,954 15,144 6,796 12,208
------------------------------ -------- -------- ------- --------
* toolchain objects (libm/libgcc*)
** RT AI runtime objects (kernels+infrastructure)
@ -489,9 +345,9 @@ macc=957,040 weights=29,372 act=37,120 ram_io=0
---------------------------------------------------
FLASH (ro) %* RAM (rw) %
---------------------------------------------------
RT total 29,586 50.2% 11,236 23.2%
RT total 24,958 62.6% 7,100 37.4%
---------------------------------------------------
TOTAL 58,962 48,356
TOTAL 39,894 19,004
---------------------------------------------------
* rt/total

View File

@ -108,7 +108,7 @@ ProjectManager.ToolChainLocation=
ProjectManager.UAScriptAfterPath=
ProjectManager.UAScriptBeforePath=
ProjectManager.UnderRoot=false
ProjectManager.functionlistsort=1-SystemClock_Config-RCC-false-HAL-false,2-MX_GPIO_Init-GPIO-false-HAL-true,3-MX_USART2_UART_Init-USART2-false-HAL-true,3-MX_X_CUBE_AI_Init-STMicroelectronics.X-CUBE-AI.10.0.0-false-HAL-false,4-MX_X_CUBE_AI_Process-STMicroelectronics.X-CUBE-AI.10.0.0-false-HAL-false
ProjectManager.functionlistsort=1-SystemClock_Config-RCC-false-HAL-false,2-MX_GPIO_Init-GPIO-false-HAL-true,3-MX_USART6_UART_Init-USART6-true-HAL-false,4-MX_X_CUBE_AI_Init-STMicroelectronics.X-CUBE-AI.10.0.0-false-HAL-false,5-MX_X_CUBE_AI_Process-STMicroelectronics.X-CUBE-AI.10.0.0-false-HAL-false
RCC.48MHZClocksFreq_Value=84000000
RCC.AHBFreq_Value=168000000
RCC.APB1CLKDivider=RCC_HCLK_DIV4
@ -151,7 +151,7 @@ RealThread.X-CUBE-RT-Thread_Nano.4.1.1.RTOSJjRTAaThread_Checked=true
RealThread.X-CUBE-RT-Thread_Nano.4.1.1.RT_USING_CONSOLE=1
RealThread.X-CUBE-RT-Thread_Nano.4.1.1.RT_USING_FINSH=1
RealThread.X-CUBE-RT-Thread_Nano.4.1.1_SwParameter=RTAaThreadCcRTOSJjshell\:true;RTAaThreadCcRTOSJjlibcpu\:true;RTAaThreadCcRTOSJjkernel\:true;
STMicroelectronics.X-CUBE-AI.10.0.0.ActivationBufferSizeList=48356
STMicroelectronics.X-CUBE-AI.10.0.0.ActivationBufferSizeList=19004
STMicroelectronics.X-CUBE-AI.10.0.0.ActivationBuffers=pool0
STMicroelectronics.X-CUBE-AI.10.0.0.ActivationNames=pool0
STMicroelectronics.X-CUBE-AI.10.0.0.ActivationSizes=AI_MODEL_DATA_ACTIVATION_1_SIZE
@ -169,14 +169,14 @@ STMicroelectronics.X-CUBE-AI.10.0.0.MaximumSizeOfInputLayer=1
STMicroelectronics.X-CUBE-AI.10.0.0.MaximumSizeOfOutputLayer=1
STMicroelectronics.X-CUBE-AI.10.0.0.ModelActualCompression-c35f95d1c3769e6590a83616504880a40e4284009f187f8d3c6d958dcc42b13d=0.0
STMicroelectronics.X-CUBE-AI.10.0.0.ModelCompression-c35f95d1c3769e6590a83616504880a40e4284009f187f8d3c6d958dcc42b13d=High
STMicroelectronics.X-CUBE-AI.10.0.0.ModelFlashOccupation-c35f95d1c3769e6590a83616504880a40e4284009f187f8d3c6d958dcc42b13d=59596
STMicroelectronics.X-CUBE-AI.10.0.0.ModelFlashOccupation-c35f95d1c3769e6590a83616504880a40e4284009f187f8d3c6d958dcc42b13d=40532
STMicroelectronics.X-CUBE-AI.10.0.0.ModelHashList=c35f95d1c3769e6590a83616504880a40e4284009f187f8d3c6d958dcc42b13d
STMicroelectronics.X-CUBE-AI.10.0.0.ModelKind-c35f95d1c3769e6590a83616504880a40e4284009f187f8d3c6d958dcc42b13d=TFLITE
STMicroelectronics.X-CUBE-AI.10.0.0.ModelMacc-c35f95d1c3769e6590a83616504880a40e4284009f187f8d3c6d958dcc42b13d=957040
STMicroelectronics.X-CUBE-AI.10.0.0.ModelMacc-c35f95d1c3769e6590a83616504880a40e4284009f187f8d3c6d958dcc42b13d=156480
STMicroelectronics.X-CUBE-AI.10.0.0.ModelName-c35f95d1c3769e6590a83616504880a40e4284009f187f8d3c6d958dcc42b13d=model
STMicroelectronics.X-CUBE-AI.10.0.0.ModelNameList=model
STMicroelectronics.X-CUBE-AI.10.0.0.ModelRamOccupation-c35f95d1c3769e6590a83616504880a40e4284009f187f8d3c6d958dcc42b13d=48356
STMicroelectronics.X-CUBE-AI.10.0.0.ModelStructureFile-c35f95d1c3769e6590a83616504880a40e4284009f187f8d3c6d958dcc42b13d=D\:\\Job_Work\\Code\\Z_Python\\myEnv\\model.tflite
STMicroelectronics.X-CUBE-AI.10.0.0.ModelRamOccupation-c35f95d1c3769e6590a83616504880a40e4284009f187f8d3c6d958dcc42b13d=19004
STMicroelectronics.X-CUBE-AI.10.0.0.ModelStructureFile-c35f95d1c3769e6590a83616504880a40e4284009f187f8d3c6d958dcc42b13d=D\:\\Job_Work\\Code\\Z_Python\\myEnv\\model2.tflite
STMicroelectronics.X-CUBE-AI.10.0.0.ModelType-c35f95d1c3769e6590a83616504880a40e4284009f187f8d3c6d958dcc42b13d=STM32Cube.AI MCU runtime
STMicroelectronics.X-CUBE-AI.10.0.0.ReadyForCodeGeneration=true
STMicroelectronics.X-CUBE-AI.10.0.0.StackSize=0x800

View File

@ -62,6 +62,7 @@
| 2025-05-23 | 增加UART的传感器处理部分的功能函数 | |
| 2025-05-24 | 完成传感器采集逻辑现在1024完成 | |
| | 左翻置信率低 怀疑垫体问题 | |
| 2025-05-26 | CAN版本260点增加模型完成 | |
---

View File

@ -1822,7 +1822,7 @@
<Name>Build</Name>
<Buttons>
<Len>970</Len>
<Data>00200000010000001000FFFF01001100434D4643546F6F6C426172427574746F6ECF7F0000000000001C0000000000000000000000000000000001000000010000000180D07F0000000002001D000000000000000000000000000000000100000001000000018030800000000000001E000000000000000000000000000000000100000001000000FFFF01001500434D4643546F6F6C4261724D656E75427574746F6EC7040000000000006A0000000C4261746368204275696C2664000000000000000000000000010000000100000000000000000000000100000004000580C7040000000000006A0000000C4261746368204275696C266400000000000000000000000001000000010000000000000000000000010000000000058046070000000000006B0000000D42617463682052656275696C640000000000000000000000000100000001000000000000000000000001000000000005804707000000000000FFFFFFFF0B426174636820436C65616E0100000000000000010000000000000001000000000000000000000001000000000005809E8A0000000000001F0000000F4261746326682053657475702E2E2E000000000000000000000000010000000100000000000000000000000100000000000180D17F0000000004002000000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF00000000000000000000000000010000000100000001804C8A0000000000002100000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF000000000000000000000000000100000001000000FFFF01001900434D4643546F6F6C426172436F6D626F426F78427574746F6EBA000000000000000000000000000000000000000000000000010000000100000096000000030020500000000005584D2D30319600000000000000010005584D2D3031000000000180EB880000000000002200000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180C07F000000000000230000000000000000000000000000000001000000010000000180B08A000000000400240000000000000000000000000000000001000000010000000180A8010000000000004E00000000000000000000000000000000010000000100000001807202000000000000530000000000000000000000000000000001000000010000000180BE010000000000005000000000000000000000000000000000010000000100000000000000054275696C64DC010000</Data>
<Data>00200000010000001000FFFF01001100434D4643546F6F6C426172427574746F6ECF7F0000000000001C0000000000000000000000000000000001000000010000000180D07F0000000000001D000000000000000000000000000000000100000001000000018030800000000000001E000000000000000000000000000000000100000001000000FFFF01001500434D4643546F6F6C4261724D656E75427574746F6EC7040000000000006A0000000C4261746368204275696C2664000000000000000000000000010000000100000000000000000000000100000004000580C7040000000000006A0000000C4261746368204275696C266400000000000000000000000001000000010000000000000000000000010000000000058046070000000000006B0000000D42617463682052656275696C640000000000000000000000000100000001000000000000000000000001000000000005804707000000000000FFFFFFFF0B426174636820436C65616E0100000000000000010000000000000001000000000000000000000001000000000005809E8A0000000000001F0000000F4261746326682053657475702E2E2E000000000000000000000000010000000100000000000000000000000100000000000180D17F0000000004002000000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF00000000000000000000000000010000000100000001804C8A0000000000002100000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF000000000000000000000000000100000001000000FFFF01001900434D4643546F6F6C426172436F6D626F426F78427574746F6EBA000000000000000000000000000000000000000000000000010000000100000096000000030020500000000005584D2D30319600000000000000010005584D2D3031000000000180EB880000000000002200000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180C07F000000000000230000000000000000000000000000000001000000010000000180B08A000000000400240000000000000000000000000000000001000000010000000180A8010000000000004E00000000000000000000000000000000010000000100000001807202000000000000530000000000000000000000000000000001000000010000000180BE010000000000005000000000000000000000000000000000010000000100000000000000054275696C64DC010000</Data>
</Buttons>
<OriginalItems>
<Len>583</Len>
@ -3687,9 +3687,9 @@
</Doc>
<Doc>
<Name>..\Core\Src\mySensor_deal.c</Name>
<ColumnNumber>7</ColumnNumber>
<ColumnNumber>28</ColumnNumber>
<TopLine>85</TopLine>
<CurrentLine>90</CurrentLine>
<CurrentLine>101</CurrentLine>
<Folding>1</Folding>
<ContractedFolders></ContractedFolders>
<PaneID>0</PaneID>

View File

Can't render this file because it is too large.

File diff suppressed because it is too large Load Diff

Binary file not shown.